PROJECT MEMORANDUM

FF # 3C

FICHA PERMIT

ADMINISTRATIVE RECORD

TEM NUMBER OF PAGES

ILE COPY

DATE:

August 20, 1993

TO:

John Stiller

CC:

Gary Podrabsky Nate Mathews

Dave Haddock

FROM:

Joe Depner

A D

PROJECT:

Burlington Environmental Inc. Pier 91 RFI

SUBJECT:

SUBMITTAL OF DATA PACKAGE TO USEPA IN SUPPORT OF

VARIANCE REQUEST

Attached is a data package to be submitted to Mr. David Croxton of the U.S. Environmental Protection Agency (USEPA), Region X, Seattle. These data are relevant to the Work Plan variance request that Burlington submitted to the USEPA in March 1993. The variance involves substitution of Port of Seattle (Port) monitoring well MW-39-3 for proposed well CP-120, for quarterly groundwater sampling. Recall that during a meeting with Mr. Croxton on August 9, 1993 we agreed to submit these data to the USEPA. Please review the attached wording and data and contact me if you have any questions or comments. Thank you.

BACKUP DATA FOR BURLINGTON PIER 91 RFI WORK PLAN VARIANCE REQUEST

August 20, 1993

As per the meeting held on August 9, 1993, between representatives of Burlington Environmental Inc. (Burlington) and the U.S. Environmental Protection Agency (USEPA), Burlington presents the attached data to the USEPA. These data are relevant to the Pier 91 RFI Work Plan variance request that Burlington submitted to the USEPA in March 1993. The variance involves substitution of Port of Seattle (Port) monitoring well MW-39-3 for proposed monitoring well CP-120, for quarterly groundwater sampling.

The data package contains the following elements:

- a copy of the report (Harding Lawson Associates, 1990) that was prepared at the time well MW-39-3 was installed. This report, which presents the results of a tank removal investigation, includes the following information:
 - geologic logs/construction diagrams for Port wells MW-39-1, MW-39-2, and MW-39-3
 - a site map showing the locations of the above wells
 - the results of soil/groundwater/product chemical analyses performed as part of the tank removal investigation
- geologic logs/construction diagrams and soil sample analysis results for monitoring wells CP-104A, CP-107, and CP-112;
- geologic log and soil and groundwater sample analysis results for borehole TB-2;
- geologic log and groundwater sample analysis results for borehole HA-2;
- analysis results for groundwater samples collected from monitoring wells MW-39-3, CP-104A, CP-107, and CP-112 during the April 1993 and July 1993 sampling events; and
- analysis results for nonaqueous-phase liquid samples collected from monitoring wells MW-39-3 and CP-107 during the April 1993 sampling event.

Elevations of groundwater and/or NAPL levels are not yet available because Burlington has not yet received the land surveyor's report. Receipt of this report is expected by the end of August.

Sources of the attached data are summarized in Table 1.

Table 1

DATA SOURCES

	Geologic Log/	Soil Sample				
Borehole/Well	Construction Diagram	Results		Groundwater San	nple Results	
			12/87	12/88 to 2/89	04/93	07/93
TB-2	3	4	3	3, 4	N/A	N/A
HA-2	1	N/A	1	N/A	N/A	N/A
MW-39-1	5	5	N/A	N/A	N/A	N/A
MW-39-2	5	5	N/A	N/A	N/A	N/A
MW-39-3	5	5	N/A	N/A	6	6
CP-104A	1	1	2	3	6	6
CP-107	3	4	N/A	3, 4	6	6
CP-112	6	6	N/A	N/A	6	6

N/A - Not applicable

Key to Data Sources

- 1. Sweet-Edwards / EMCON, Inc., Phase 1 Hydrogeologic Investigation, Chemical Processors, Inc. Pier 91 Facility, May 1988.
- 2. Sweet-Edwards / EMCON, Inc., Phase 1 Hydrogeologic Investigation, Chemical Processors, Inc. Pier 91 Facility, February 1988.
- 3. Sweet-Edwards / EMCON, Inc., Hydrogeologic Investigation, Pier 91 Facility, Chemical Processors, Inc. Vol. 1 April 24, 1989.
- 4. Sweet-Edwards / EMCON, Inc., Hydrogeologic Investigation, Pier 91 Facility, Chemical Processors, Inc. Vol. 2, Appendix E, April 24, 1989.
- 5. Harding Lawson Associates, Underground Storage Tank Investigation in the Vicinity of the City Ice Building, Terminal 91 for the Port of Seattle, June, 1990.
- 6. Burlington Environmental Inc., Unpublished data collected during ongoing RFI.

A Report Prepared for

Port of Seattle Pier 66 Seattle, Washington 98111

UNDERGROUND STORAGE TANK INVESTIGATION IN THE VICINITY OF THE CITY ICE BUILDING TERMINAL 91 FOR THE PORT OF SEATTLE

HLA Job No. 14124,011.09

by

Susan C. Walker by Sea Staff Geologist

Glen M. Wyatt

Associate Hydrogeologist

Harding Lawson Associates 1325 Fourth Avenue Suite 2110 Seattle, Washington 98101 (206) 622-0812

June 18, 1990

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1-1
	1.1	Background	
2.0	SOIL	AND GROUNDWATER INVESTIGATION	2-1
	2.1 2.2 2.3 2.4 2.5 2.6	Drilling and Soil Sampling	2-2 2-3 2-5 2-6
3.0	DISC	USSIONNOISZU	3-1
	3.1	Site Remediation Options	3-2
4.0	SUM	MARY AND RECOMMENDATIONS	4-1
	APPE A B	ENDICES Field Data Laboratory Data	

Harding Lawson Associates

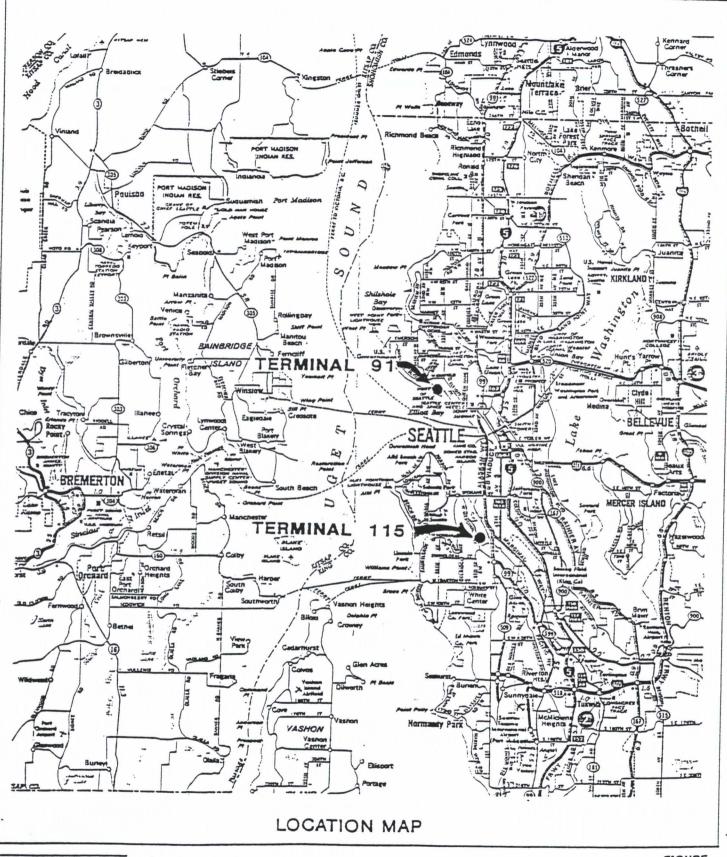
LIST OF TABLES

Numb	er	Page
2-1	Monitoring Well Construction	2-3
2-2	Well Development Information	2-4
2-3	Groundwater Sampling Data	
2-4	Water-Level Measurements	2-5
2-5	Soil Sample Analyses	

LIST OF FIGURES

Numbe	Follows	Page
1-1	Location Map	1-1
1-2	Marine Facilities, Terminal 91 (South)	1-1
1-3	Building W-39 Vicinity Map	1-2

1.0 INTRODUCTION ·


This report presents results of the soil and groundwater investigation performed by Harding Lawson Associates (HLA) in the vicinity of the Tank 91N site at the Port of Seattle's (Port) Terminal 91 (Figure 1-1). This work was authorized by an agreement dated December 15, 1989, between the Port and HLA. The work authorized included observation of underground storage tank (UST) removal, soil sampling during tank removal, installation of three monitoring wells, and soil and groundwater analyses.

Tank 91N was removed from Terminal 91 on December 22, 1989. The tank was an approximately 650-gallon steel tank used for storage of diesel fuel. The tank was located approximately 10 feet north of the old City Ice building (Cold Storage Warehouse, Building W-39 on Figure 1-2) and held fuel used for a standby generator at the building.

1.1 BACKGROUND

Hydrocarbon contamination of soils and groundwater in the vicinity of the Tank 91N site has been documented during investigations for construction of the new City Ice building (Building W-390) north of the Tank 91N site and by an investigation of the Chemical Processors, Inc. (Chempro) facility east of the Tank 91N site. GeoEngineers, Inc. reported that shallow groundwater in the vicinity of the Building W-390 site contained 5 part per million (ppm) petroleum hydrocarbons, 0.030 ppm benzene, 20 ppb orthoxylene, and a trace of diesel fuel ("Summary of Supplemental Monitor Well Measurements," August 31, 1987).

Hydrogeologic investigations have been conducted in the vicinity of the Chempro site since late in 1987 by Sweet Edwards/EMCON Inc. (SE/E), as described in the SE/E report "Hydrogeologic Investigation, Pier 91 Facility, Chemical Processors, Inc.," dated April 24, 1989 and summarized below. The site is underlain by a shallow water-table aquifer composed of 15 to 20 feet of sand and gravel deposited as fill, having a horizontal hydraulic conductivity of 10⁻² to 10⁻⁴ centimeters per second (cm/sec). Groundwater in this aquifer generally flows to the southwest at hydraulic gradient of 0.002 (2 feet change in head per 1,000 feet horizontally). The HLA investigation near the Tank 91N site is limited to the shallow water-table aquifer.

Harding Lawson Associates

Engineering and
Environmental Services

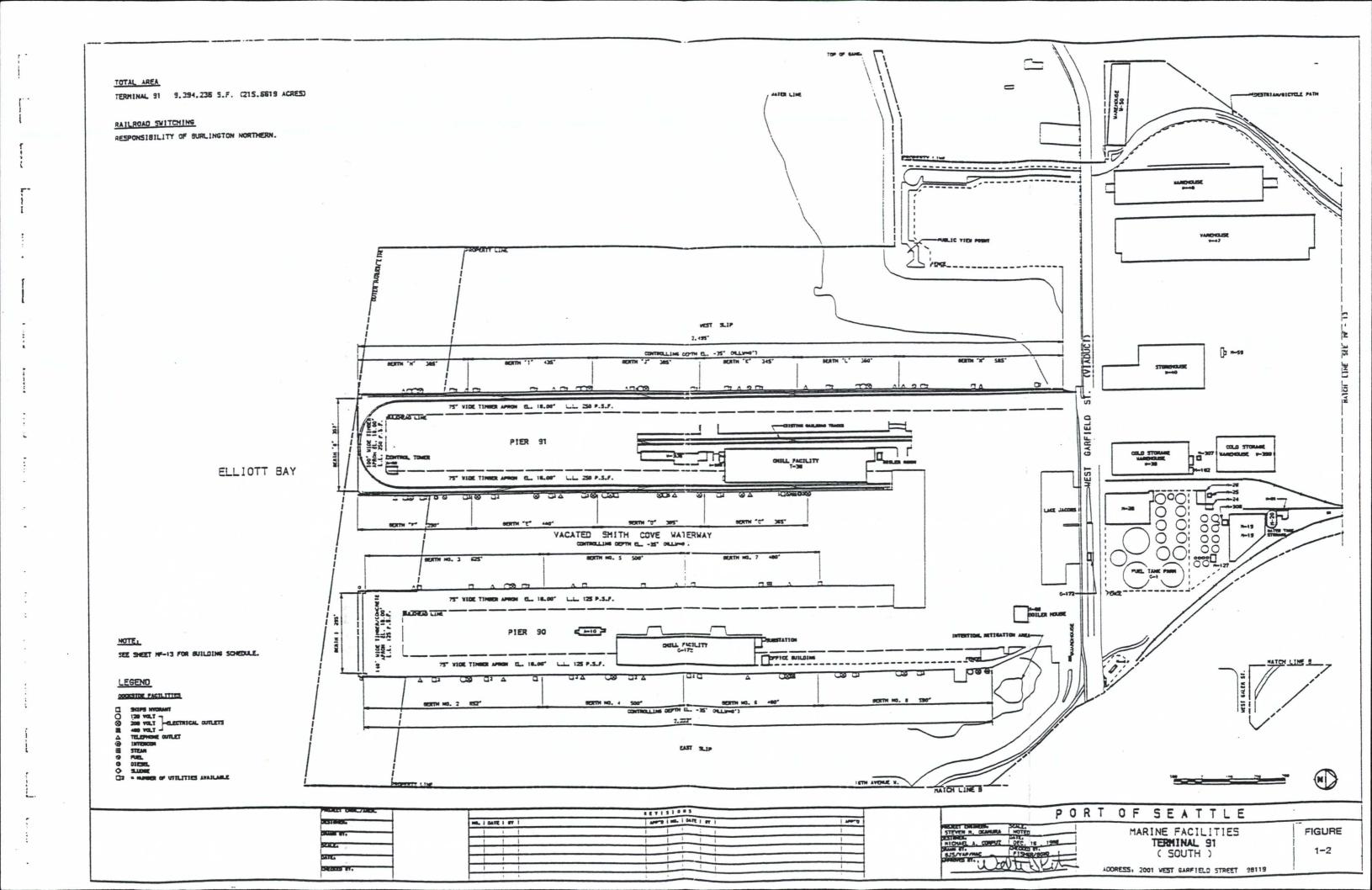
PORT OF SEATTLE

FIGURE

1-

DRAWN

JOB NUMBER 1412401109 APPROVED GW


SE/E installed three shallow monitoring wells (CP-104-A, CP-107, and CP-110) and one temporary boring (TB-2) between Building W-39 and the Chempro facility (Figure 1-3). Based on the groundwater flow direction reported by SE/E (to the southwest), TB-2 and CP-104A are hydraulically upgradient of the Tank 91N site. Benzene, toluene, ethylbenzene, and xylene (BTEX) compound concentrations totaling 78 ppm were detected in a near-surface soil sample from TB-2. Significant concentrations of other volatile and semivolatile organic compounds were also present in soils from this boring.

Free product was reported by SE/E on the water table in CP-107 and TB-2. BTEX concentrations in water from TB-2 in March 1989 were 1.0, 2.4, 0.48 and 1.1 ppm, respectively. BTEX concentrations from the March 1989 sampling of CP-104-A were 0.0059, 0.020, 0.0055, and 0.020 ppm, respectively. Organic constituents in the water that exceeded EPA maximum contaminant levels included vinyl chloride and 1,1-dichloroethene in CP-104-A and TB-2.

Underneath the fill is a silty sand aquitard which extends to a depth of 30 to 45 feet. A confined aquifer composed of gravelly sand underlies the aquitard. Well CP-104-B was installed in the lower aquifer. The groundwater flow direction in this aquifer is south to southeast and the horizontal hydraulic gradient is approximately 0.007. SE/E reported that water levels in wells in this aquifer were affected by tidal fluctuations and that a downward hydraulic gradient of 0.023 was present at CP-104. SE/E measured horizontal hydraulic conductivities from 10⁻³ to 10⁻⁴ cm/sec and reported the average hydraulic conductivity as 10⁻² cm/sec. Concentrations of organic compounds were near or below detection limits in the confined aquifer.

1.2 REMOVAL OF TANK 91N

Meridian Excavating removed Tank 91N from the area outside of the northeast corner of Building W-39 on December 22, 1989: HLA personnel were on site during the tank removal to observe the conditions of the UST system and to document the conditions of soils and groundwater in the tank excavations. Information previously supplied by to HLA by the Port indicated that soils in the vicinity of this tank had up to 50,000 ppm of total petroleum hydrocarbons.

Immediately prior to removal, Meridian added dry ice to the tank to expel flammable vapors. The Seattle Fire Department subsequently determined that the tank was safe for removal.

Overlying soil and asphalt cover was excavated by Meridian using a tire-mounted backhoe.

The uppermost excavated soil was dark brown and became gray to the 2-foot depth, apparently stained and saturated with petroleum product. In the northeast corner of the tank pit there was a black layer of gravelly sand, approximately one- to two-feet thick, extending towards the south and west ends of the tank pit. Initial organic vapor meter (OVM) readings of 18 ppm, calibrated to isobutylene gas, were obtained from the gray soil. No OVM response was recorded from the dark brown soil.

An approximately 3-feet thick, 2.5-feet wide by 4-feet long concrete block was on top of the tank. Once the block was removed, two puncture holes were observed in the middle of the top of the tank. During excavation, the backhoe put a large hole and dent on the north end of the tank. No corrosion holes were observed in the middle and north end of the tank. Corrosion pits and numerous corrosion holes (up to 1/2-inch diameter) were noticed on top half of the south end of the tank and on the tank top near the intake pipe. The steel tank was buried 3 feet below grade and was 8 feet long and 46 inches in diameter. A steel tag attached to the tank identified the manufacturer as Amick Sheet Metal Works and the capacity as 672 gallons.

Pipes in the west and east side of the tank pit, approximately 3 feet below ground surface, were very rusted. However, no obvious holes were observed. The tank was not anchored in place from below and no concrete pad was present beneath the tank.

HLA collected a soil sample from the southwest corner of the tank pit, from the saturated, black gravelly sand, that had a diesel odor. An OVM reading of 73 ppm was taken from this sample. HLA also sampled gray stained soil that had a very slight diesel odor and OVM reading of 50 ppm, from the northeast corner of the tank pit. Both samples were collected from just below the former tank position at approximately 6 feet below ground surface. No groundwater was encountered in the hole. Following excavation of the tank, Meridian filled the hole with the excavated soil and clean fill material.

HONTORING WELLS AND SOIL BORINGS LOCATIONS

COLD STORAGE WAREHOUSE BUILDING W-390 TANK 91N (BUILDING W-38) MAIN GATE WATER TANK SEAFOOD **PROCESS** BUILDING TANK FARM BOILER SHOP-TANK FARM 0000

Immediately prior to removal, Meridian added dry ice to the tank to expel flammable vapors. The Seattle Fire Department subsequently determined that the tank was safe for removal.

Overlying soil and asphalt cover was excavated by Meridian using a tire-mounted backhoe.

The uppermost excavated soil was dark brown and became gray to the 2-foot depth, apparently stained and saturated with petroleum product. In the northeast corner of the tank pit there was a black layer of gravelly sand, approximately one- to two-feet thick, extending towards the south and west ends of the tank pit. Initial organic vapor meter (OVM) readings of 18 ppm, calibrated to isobutylene gas, were obtained from the gray soil. No OVM response was recorded from the dark brown soil.

An approximately 3-feet thick, 2.5-feet wide by 4-feet long concrete block was on top of the tank. Once the block was removed, two puncture holes were observed in the middle of the top of the tank. During excavation, the backhoe put a large hole and dent on the north end of the tank. No corrosion holes were observed in the middle and north end of the tank. Corrosion pits and numerous corrosion holes (up to 1/2-inch diameter) were noticed on top half of the south end of the tank and on the tank top near the intake pipe. The steel tank was buried 3 feet below grade and was 8 feet long and 46 inches in diameter. A steel tag attached to the tank identified the manufacturer as Amick Sheet Metal Works and the capacity as 672 gallons.

Pipes in the west and east side of the tank pit, approximately 3 feet below ground surface, were very rusted. However, no obvious holes were observed. The tank was not anchored in place from below and no concrete pad was present beneath the tank.

HLA collected a soil sample from the southwest corner of the tank pit, from the saturated, black gravelly sand, that had a diesel odor. An OVM reading of 73 ppm was taken from this sample. HLA also sampled gray stained soil that had a very slight diesel odor and OVM reading of 50 ppm, from the northeast corner of the tank pit. Both samples were collected from just below the former tank position at approximately 6 feet below ground surface. No groundwater was encountered in the hole. Following excavation of the tank, Meridian filled the hole with the excavated soil and clean fill material.

2.0 SOIL AND GROUNDWATER INVESTIGATION

The "Draft Work Plan for Underground Storage Tank Investigations at Terminals 91 and 115 for the Port of Seattle" dated January 12, 1989 was used as a basis for the field investigation described below. Modifications to the planned field investigation were made during meetings with Port personnel and as the field investigation progressed.

2.1 DRILLING AND SOIL SAMPLING

HLA began the soil and groundwater investigation of the Tank 91N site on January 16, 1990 to assess the extent of hydrocarbons in the soil and groundwater at the tank site. Three monitoring wells (MW-39-1, -2, and -3) were installed and sampled (Figure 1-3). Prior to drilling the boreholes, the locations of electrical, steam, water, gas, telephone, and sewer lines were marked in the vicinity of the site. Concrete cutting was required for drilling boreholes MW-39-1 and MW-39-2.

Drilling and soil sampling was performed using a truck-mounted Mobile B-61 drill rig equipped with hollow-stem augers, owned and operated by Hokkaido Drilling and Development Corporation of Graham, Washington. Four-inch inside-diameter hollow-stem augers were used for drilling MW-39-1. Because heaving sands were encountered while drilling this borehole, 6-inch inside diameter augers were used during drilling the other boreholes. Water was added to the augers while drilling to maintain hydrostatic head in the augers to minimize the amount of sand flowing into the augers.

A split-spoon sampler, lined with three 2-inch diameter by 6-inch long brass tubes, was used to obtain soil samples at 2.5 feet below grade and at subsequent five-foot intervals. The sampler was driven 18 inches below the auger bit using a 140-pound hammer falling 30 inches and the number of blows required for each 6-inch interval were recorded. The lowermost brass tube from each sample was sealed with aluminum foil, capped with plastic caps, and saved for laboratory analysis.

Soil was visually classified using the Unified Soil Classification System. Soil samples were monitored for visual indications of product and organic vapors using odors and OVM measurements in the field. The presence of vapors, hydrocarbon odors, or visual evidence of petroleum product in the soils was logged. Soil hydrocarbon vapor measurements were made by extracting soil from the sampler tip and/or middle brass tube into a plastic bag and aspirating the vapors. The OVM was calibrated with isobutylene gas. The OVM was not functioning during the drilling of MW-39-1.

No evidence of hydrocarbon contamination was seen in soils from the MW-39-1 borehole. Product saturated soils were encountered in soils above the water table in the other two boreholes.

An on-site mobile laboratory equipped with a Hewlett-Packard 5890 gas chromatograph, operated by Enviros Laboratories of Bellevue, Washington, was initially used at Terminal 91 tank site. The on-site mobile laboratory provided rapid analyses of soils using modified EPA Method 8015 for petroleum hydrocarbon fingerprinting. The mobile laboratory was used only during drilling of MW-39-1, because field conditions made drilling and well installation slower than anticipated. Remaining soil samples were analyzed by Enviros in their Bellevue laboratory.

A steel pipe that had not been located and marked was encountered while drilling MW-39-3. The borehole was moved and a different pipe was encountered. The borehole was successfully drilled approximately five feet east of the original location. The abandoned boreholes were filled with bentonite chips and capped with cement.

All down-hole equipment was steam-cleaned prior to drilling each hole. The soil sampling equipment was cleaned with detergent and rinsed with tap water followed by distilled water prior to obtaining each sample.

2.2 MONITORING WELL INSTALLATION

Monitoring wells were installed in the three boreholes (Table 2-1). Two-inch diameter flush-threaded Schedule 40 polyvinyl chloride (PVC) casing and screen (with 0.020-inch machine-cut slots) was used for well construction. A bottom threaded cap and top locking cap were installed on each well. The top of each well screen was placed approximately 2 feet above the water

table. Wells were sand-packed with Lone Star number 2/16 Lapis Lustre sand and sealed with approximately one foot of bentonite chips. A traffic-rated street box was cemented into the surface at each site.

During installation of MW-39-1, sand bridged between the augers and well casing, raising the well. Water was added to the borehole to loosen the casing in order to jet the casing into place.

Table 2-1. Monitoring Well Construction.

Well Number	Date Completed	Borehole Depth (feet)	Screened Interval (feet)	Top of Sand Pack (feet)	Depth to Top of Casing (feet below grade)
MW-39-1	1/18/90	17.5	3.8-13.8	3.0	0.63
MW-39-2	1/18/90	14.8	4.0-14.0	2.8	0.79
MW-39-3	1/19/90	14.0	4.0-14.0	2.0	0.42

All soil cuttings and water derived from drilling, sampling, and cleaning was stored on-site in 55-gallon barrels. The soil cuttings were removed and soil was disposed of by Field Support Services, Inc.

Ground elevation and location data were supplied by the Port, and are included on the logs of borings in Appendix A.

2.3 WELL DEVELOPMENT AND SAMPLING

The three wells were developed by surging and bailing on January 26, 1989 (Table 2-2). Water levels were recorded in feet below the top of casing (btoc). Product or a product sheen was noted in MW-39-2 and -3. One casing volume in each well was approximately 1.5 gallons; therefore, 13 to 16 casing volumes were removed from each well during development.

Table 2-2. Well Development Information.

Well Number	Depth to Water (feet, btoc)	Volume Removed During Development (gallons)	Final pH (units)	Final Temperature (°C)
MW-39-1	4.58	25	7.7	11.3
MW-39-2	4.42	20	7.1	12.1
MW-39-3	4.83	20	7.0	12.1

MW-39-1 and -2 were subsequently sampled on February 12, 1990 (Table 2-3). Static water levels in each well and the presence and thickness of free product, if present, was monitored. MW-39-3 was not sampled because 0.85 feet of product was measured on top of the water, using a gauging bailer. Prior to sampling, both wells were purged using a hand-powered diaphragm pump. Temperature, pH, and conductivity of the water was monitored during purging. Samples were collected with a stainless-steel bailer after a minimum of 15 well volumes had been purged. Final temperature, pH, and conductivity measurements are given in Table 2-3.

Table 2-3. Groundwater Sampling Data.

Weil Number	Purge Volume (gallons)	pH (units)	Temperature (°C)	Specific Conductance (umhos/cm)
MW-39-1	28	7.4	8	525
MW-39-2	24	7.1	8	. 470

Water samples were poured from the bailer into sample containers in a manner to minimize aeration of the samples during the transfer process. The samples were retained in 40-milliliter vials. Water from the two wells was turbid, gray, had a moderate product odor, and had a slight product sheen. Care was taken to allow no air bubbles or headspace in the vials. The samples were labeled, wrapped to prevent breakage, and stored in an ice-filled cooler during field activities and transit to the laboratory. All samples were logged on chain-of-custody forms and delivered to Enviros' laboratory for analysis using modified EPA method 8015.

Monitoring and sampling equipment was decontaminated prior to use in each well by washing with a laboratory-grade detergent and rinsing with distilled water. Decontaminated sample vials were supplied by the laboratory.

2.4 WATER-LEVEL MEASUREMENTS

Table 2-4 summarizes water-level measurements following well completion. Free product was observed in MW-39-2 and -3. The depth to water or free product was measured from the north side of the top of the PVC well casing. Because product, with a typical specific gravity of 0.85, is lighter than water, the measured depth to product is less than the depth to the water table. Where necessary, the water table depth was determined by adding the product thickness multiplied by the difference between the specific gravities of product and water, to the depth to fluid measurement.

Table 2-4. Water-Level Measurements.

Well Number	Top of Casing Elevation (feet)	Date	Depth to Fluid (feet, btoc)	Product Thickness (feet)		ater Table Elevation (feet)
MW-39-1	16.65	2/12/90	4.23	None		12.42
		6/15/90	4.86	None		11.79
MW-39-2	16.85	2/12/90	3.90	None		12.95
		6/15/90	4.65	1 (approx)		12.05
MW-39-3	17.34	2/12/90	5.02	0.85		13.04
		6/15/90	5.10	0.85	;	12.11

Based on the water-level elevations given in Table 2-4, groundwater flows in the west to northwest direction. The hydraulic gradient is approximately 0.01.

Free product was also observed on the water surface in the SE/E well CP-107 on January 19, 1990. The depth to water was approximately 5.5 feet below grade and approximately one-eighth of an inch of product was present on the water surface.

2.5 AQUIFER TESTING

During development, it was noted that water levels recovered almost immediately after bailing. For this reason, slug tests were not performed. Instead, hydraulic conductivity estimates were made using recovery data from well purging before sampling. The static water level, volume pumped from the wells before sampling, duration of pumping, and at least one recovery water-level measurement were recorded. Order-of-magnitude estimates of the hydraulic conductivity of the soils at each site were made using Skibitzke's residual drawdown method (Appendix A). The estimated hydraulic conductivity of the soils in the vicinity of MW-39-1 and MW-39-2 is 10^{-2} cm/sec, which agrees with the value reported by SE/E for the Chempro site.

2.6 LABORATORY ANALYSES

Enviros analyzed soil and groundwater samples collected during the removal of Tank 91N and the installation and sampling of the monitoring wells. Laboratory reports are included in Appendix B.

Table 2-5 lists the results of soil sampling. Samples S-3-SW and S-3-NE were obtained from the tank excavation. Samples from MW-39-1 were analyzed for total fuel hydrocarbons (TFH) using EPA Method 8015, modified, in Enviros' mobile laboratory. Other TFH analyses were performed in Enviros' Bellevue laboratory. Total petroleum hydrocarbons (TPH) analyses were performed by an Enviros subcontract laboratory.

Fuel type was characterized during TFH analyses. Number 2 diesel fuel was generally identified as the type of fuel hydrocarbon present in the soil samples. Light hydrocarbons (BTEX) characteristic of gasoline were not identified in the gas chromatograms from the TFH analyses. Heavier hydrocarbons are also present in the soils, as indicated by the high concentrations of TPH.

Water samples from MW-39-1 and MW-39-2 were also analyzed for TFH concentration by Enviros in their Bellevue laboratory. TFH was not detected in the sample from MW-39-1 (<1 ppm). The TFH concentration in the water sample from well MW-39-2 was 5 ppm.

2-6

Table 2-5. Soil Sample Analyses.

Sample Number	Sample Depth (feet)	Vapor Reading (ppm)	TFH By 8015 (ppm)	TPH By 418.1 (ppm)	Fuel Type
S-3-SW	6.0	73	16,000	77,882	Diesel/Kerosene
S-4-NE	6.0	50	15,000	28,544	Diesel/Kerosene
MW-39-1-1	3.5		<1.0		None
MW-39-1-2	8.5		<1.0		None
MW-39-2-1	5.0	63	7,600	28,454	Diesel Fuel #2
MW-39-2-2	8.5	39	3,500	10,083	Diesel Fuel #2
MW-39-3-1	3.5	9	<1.0		None
MW-39-3-2	8.5	30	1,300		Diesel Fuel #2

3.0 DISCUSSION

Hydrocarbon contamination is present in the soils adjacent to and upgradient of the site of Tank 91N, removed in December 1989. Upgradient contamination has been present since at least August 1987 (GeoEngineers, 1987). Free product was observed during excavation for foundations of the W-390 building north (upgradient) of the site in 1987 (Chempro, personal communication). Concentrations of diesel fuel in the soils encountered during drilling of MW-39-2 and MW-39-3 greatly exceed the Department of Ecology's (Ecology) soil cleanup guidance level of 200 ppm for hydrocarbons in soils.

Free product was observed in soil samples from above the water table while drilling MW-39-2 and MW-39-3. Free product was observed floating on water in well CP-107 and in MW-39-3 in January and February, 1990. Free product was not seen on the water surface in well MW-39-2 in February; however, the water table elevation in January and February 1990 was higher than normal because of higher than average precipitation. The water table elevation in December, at the time Tank 91N was removed, was at least two feet below the January and February level.

Approximately 10 inches of free product was present in upgradient well MW-39-3, and a trace was observed in wells installed during the Chempro site investigation. Groundwater in the vicinity of the former tank site has not been significantly affected by diesel fuel because of diesel fuel's low solubility. The TFH concentration of 5 ppm in water from well MW-39-2 was below Ecology's cleanup level of 15 ppm.

Residual product was apparently in the soil pore spaces beneath the water table during the construction of well MW-39-2. Laboratory analyses of the samples from 4.5 to 5 and 8 to 8.5 feet below grade contained 1 to 3 percent petroleum hydrocarbons. The water table was approximately 1 to 4 feet above the depth of these samples. As diesel fuel is generally not soluble in water, the high concentrations of product in these samples suggests that product remained adsorbed on soils as the water table elevation rose.

Free product was observed in MW-39-2 on June 14, 1990. The depth to the top of free product was beneath the top of the well screen. Free product had apparently entered the well

after the water table elevation decreased from mid February. The thickness of free product could not be accurately measured, but is estimated to be approximately one foot.

Local contamination of the soils in the vicinity of the tank caused by leaks in the tank or normal operations is suggested by the high product concentrations in the soil samples from the tank excavation and MW-39-2.

3.1 SITE REMEDIATION OPTIONS

As in any site cleanup, free product must be eliminated or recovered to reduce the amount of contaminated soils above the water table and to reduce the residual contamination below the water table. Site cleanup plans must take into account the amount of free product, concentrations of dissolved organics in the groundwater, the shallow depth to water, extent of contamination in and around the former tank site, relatively high permeability and thinness of the aquifer, loose nature of the sands which comprise the aquifer, and the presence of buried utilities throughout the site. Additionally, the method used for remediation of the site must not interfere with operations at Terminal 91.

Free product may be recovered using a french drain system that includes large-diameter collector wells equipped with oil-water separators or product skimmers. Alternately, a groundwater injection/withdrawal system could be installed. This system could be used to add nutrients to the injection water to encourage biodegradation.

A system of individual small-diameter collector wells appears to be impractical. The thinness of the aquifer and high permeability would require that a number of closely spaced collector wells be installed. A relatively large quantity of groundwater would need to be pumped to create significant drawdown in the aquifer.

After free-product removal, elimination of contaminated soils could be performed through excavation or biodegradation. Excavated soils could be sent to the Cedar Hills Landfill or treated on site. Excavation of soils in the Terminal 91 area may be highly impractical because of the number of utility lines which cross the area, the loose nature of the soils, and the amount of traffic throughout the area.

3-2

1

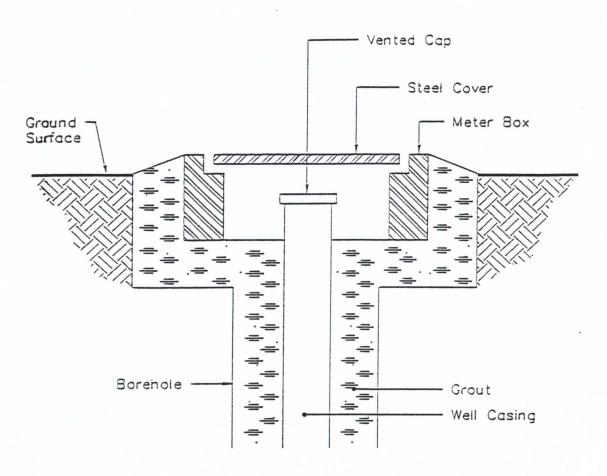
i

In-place biodegradation of the product is also possible, if factors such as the high hydraulic conductivity of the soils (requiring injection and withdrawal french drains for gradient control), areal extent of contamination, and contamination above the normal water table elevation do not eliminate this method.

Extensive excavation of contaminated soils around the tank area is probably not worthwhile, as hydrocarbons will continue to migrate into the former tank site from upgradient sources. Similarly, in-place biodegradation for this tank site alone is not worthwhile because of the upgradient free product.

4.0 SUMMARY AND RECOMMENDATIONS

Hydrocarbons and other organic constituents are present in the vicinity of the former Tank 91N site at Terminal 91. Hydrocarbon contamination is not limited to the immediate vicinity of the Tank 91N site, as product has been detected in soils and on groundwater upgradient of the site. Soils in the immediate vicinity of the former tank site contain 1 to 8 percent hydrocarbons, however.


HLA suggests that an interim monitoring program should be undertaken. This monitoring would consist of water level measurements and product gauging of the three wells installed for this investigation, in conjunction with monitoring the wells installed around the Chempro facility.

Because free product is present in MW-39-2 and -3, remediation of the tank site alone is not warranted. It does not seem realistic to begin any site remediation method only in the vicinity of the former Tank 91N site.

Characterization of Terminal 91 further downgradient from both the Tank 91N and Chempro sites should also be performed. Additionally, high permeability backfill in utility trenches should be investigated to determine if contaminants are migrating along these possible pathways. Following this characterization, an appropriate method for remediation of Terminal 91 may be selected.

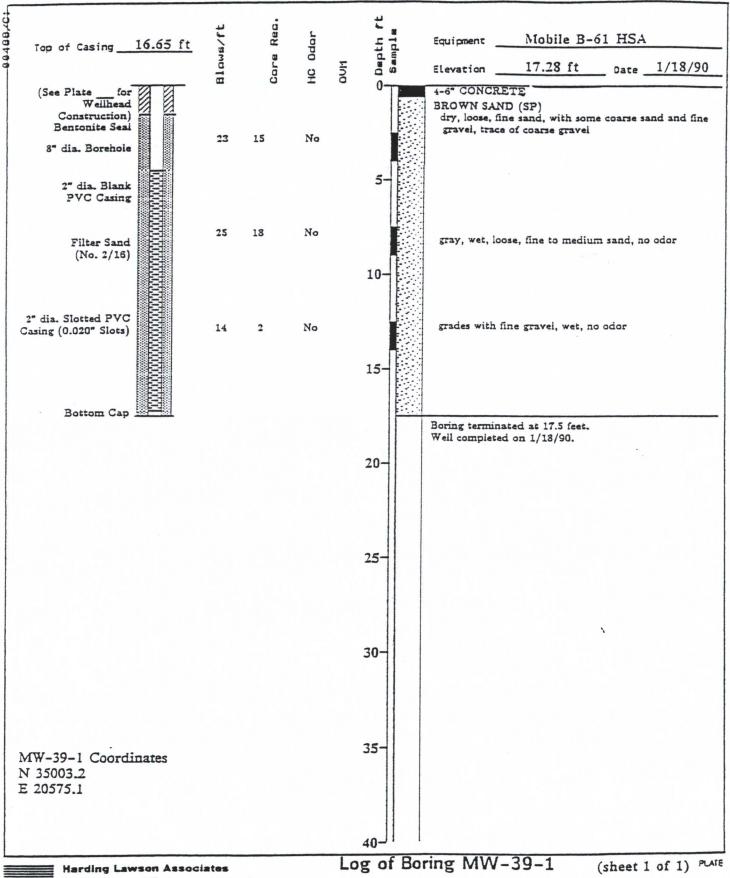
4-1

APPENDIX A FIELD DATA

WELLHEAD DETAIL

-	Bentonite-Cement Grout	Bentonite Grout
	Blank PVC Casing	:
	Bentonite Seal	
	Filter Sand	
	Slotted PVC Casing	
	Slough	

Harding Lawsen Associates
Engineering and
Environmental Services


WELLHEAD DETAIL Port of Seattle Seattle, Washington

JOB NUMBER 14124,011.09 DRAWN HK -

6/90

REVISED

BIAG

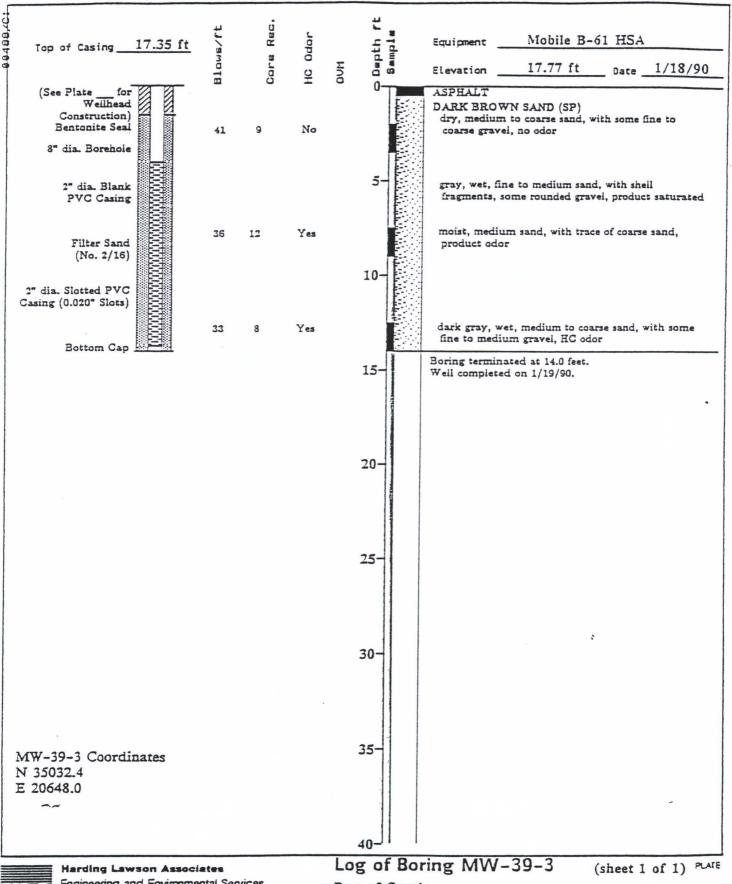
·

Engineering and Environmental Services

Port of Seattle Seattle, Washington

ORAWN HK -JOB NUMBER APPROVED DATE 14124,011.09 6/90

REVISED


Mobile B-61 HSA 16.84 ft Equipment Top of Casing 17.63 ft 1/18/90 Elevation Date 0 (See Plate for CONCRETE Weilhead DARK GRAY SAND (SP) Construction) dry, fine to medium sand, with some coarse sand Bentonite Seal and fine gravel, trace coarse gravel 43 Yes 2.0 8" dia. Borehole black, with free product, old product odor 31 12 Yes 63.0 2" dia. Blank **PVC** Casing gray, fine to coarse sand and fine gravel 15 39.0 Yes Filter Sand GRAY SILTY CLAY (ML-CL) (No. 2/16) saturated, with root fragments, HC odor, with free 10 product 2" dia. Slotted PVC Casing (0.020" Slots) 18 Yes 7.0 DARK GRAY SAND (SP) fine to medium sand, with some silt and trace gravel Bottom Cap 15 Boring completed at 15.0 feet on 1/18/90. Well completed on 1/18/90. 20-25 30-35-MW-39-2 Coordinates N 34998.2 E 20619.3 Log of Boring MW-39-2 (sheet 1 of 1) PLATE Harding Lawson Associates Engineering and Environmental Services Port of Seattle Seattle, Washington

DRAWN

JOB NUMBER 14124,011.09

APPROVED

0ATE 6/90 REVISED

Engineering and Environmental Services

Port of Seattle Seattle, Washington

JOB NUMBER HK_ 14124,011.09 APPROVED

DATE 6/90 REVISED

Transmissivity Estimation Method Based on Residual Drawdown in Bailed Well

39-1 Site: Port of Seattle Well Number: For One Bail Cycle or Pumping, Use The Following:

Time Bailing Began: llhrs 40min 11hrs Time Bailing Stopped: 50min sec

Volume Bailed: 28.00gallons Static Water Level: 4.23feet Residual Water Level: 4.38feet at

> llhrs 52min sec

gallons per day per foot feet squared per day Estimated Transmissivity: 3056

409

Saturated Thickness: 8.60feet

Estimated Permeability: 48 feet per day

1.7e-2 centimeters per second

Reference: Skibitzke, H.E., 1963, USGS WSP 1536-I, p. 293-298

Transmissivity Estimation Method Based on Residual Drawdown in Bailed Well

Well Number: 39-2 Site: Port of Seattle For One Bail Cycle or Pumping, Use The Following: Time Bailing Began: 10hrs 43min sec Time Bailing Stopped: 10hrs 50min sec

Volume Bailed: 24.00gallons Static Water Level: 3.90feet Residual Water Level: 3.97feet at

10hrs 52min sec

Estimated Transmissivity: 7144 gallons per day per foot

955 feet squared per day

Saturated Thickness: 10.08feet

Estimated Permeability: 95 feet per day

3.3e-2 centimeters per second

Reference: Skibitzke, H.E., 1963, USGS WSP 1536-I, p. 293-298

APPENDIX B LABORATORY DATA

Date of Report: February 9, 1990
Date Submitted: December 22, 1990
Project: 14124-011.09 Port of Seattle

RESULTS OF ANALYSES OF SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS (C7-C32) BY MODIFIED EPA METHOD 8015

Sample I.D.	<u>Matrix</u>	<u>Dilution</u> Factor	TPH (ppm)	RANGE (C7-C32)
S-3-SE Cnr. Tank Bott	Soil om	20	16,000	C7-C24B
S-4-NW Cnr. Tank Bott		20	15,000	C7-C24B
Quality Assura	nce			
Method Blank	Soil	1	<1.0	
S-4-NW Cnr. Tank Botto (Duplicate)	Soil	20	14,000	C7-C24B
S-4-NW Cnr. Tank Botto (Matrix Spike) Spiked @ 1,000 Percent Recove) O ppm	20	A	

A - The amount spiked was insufficient to give meaningful recovery data.

B - Indicative of Kerosene or diesel fuel.

Date of Report: February 9, 1990
Date Submitted: December 22, 1990
Project: 14124-011.09 Port of Seattle

RESULTS OF ANALYSES OF ENVIRONMENTAL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS BY IR (EPA METHOD 418.1)

Sample # Total Petroleum Hydrocarbons (ppm)

S-3-SE Cnr. Tank Bottom 77,882

S-4-NW Cnr. Tank Bottom 28,544

a: Analysis performed by subcontract.

Date of Report: February 1, 1990
Date Submitted: January 17 & 25, 1990
Project: Job # 14124-011-09

RESULTS OF ANALYSES OF SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS (C7-C32) BY MODIFIED EPA METHOD 8015

Sample #	<u>Matrix</u>	Dilution Factor	(ppm)	RANGE (C7-C32)
POS39-1-1	soil	1	<1.0	
POS39-1-2	soil	1	<1.0	
Boring 39-3-1	soil	1	<1.0	
Boring 39-3-2	soil	1	1,300	C7-C24A
POS39-2-1	soil	5	7,600	C7-C24A
POS39-2-2	soil	5	3,500	C7-C24A
Quality As	ssurance			
Method Bla	ank		<1.0	
POS39-1-1 (Duplicate	e)	1	<1.0	
POS39-2-1 (Duplicate	=)	5	3,700	C7-C24A
POS39-1-1 (Matrix Spiked & Spi	20 ppm		130%	C7-C32

A - Indicative of Diesel #2

Date of Report: February 1, 1990
Date Submitted: January 17 & 25, 1990

Project: Job # 14124-011-09

RESULTS OF ANALYSES OF ENVIRONMENTAL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS BY IR (EPA METHOD 418.1)

Sample #	Total Petroleum <u>Hydrocarbons</u> (ppm)
POS39-2-1	28,454
POS39-2-2	10,083

Quality Assurance:

Method Blank <5.0

a: Analysis performed by subcontract.

Sweet, Edwards & Associates, Inc.

BORING LOC

PROJECT _ Chempro, Pier 91 Page 1 of 1 Location See Figure 2.1 Boring No. HA-2 Drilling Method 3.25" stainless Stee Hand Auger Surface Elevation____ Total Depth 9.5' Drilled By Sweet, Edwards/Arthur Lit

Date Completed ____12/1/87 Logged By ____ S. R. Henshaw

WELL DETAILS	TRATION TIME	DEPTH (FEET)	3	AMPLE	ABILITY	SYMEOL	LITHOLOGIC DESCRIPTION	WATER
	RATE		NO.	TYPE	TESTING		1	QUALITY
d		ŀ					075' CONCRETE APRON	
lone te ncre						SP	.75-3.5' <u>SAND</u> ,	
Boring Abandoned with Bentonite Chips and Concrete		5				SP	gray, medium grained, 10-20% shell fragments, 10-15% subrounded pebbles up to 4" in diam., oily layer at approximately 3.5', moist.	
		10					3.5-8.5' as above decrease in shell fragments and pebbles, saturated at 7'.	
	-						Terminated boring at 9.5' 12/1/87	
							, in the second	this granter comments

LOG OF EXPLORATORY BORING

PROJECT NAME LOCATION DRILLED BY DRILL METHOD

LOGGED BY

Chemical Processors Pier 91 Tacoma Pump & Drill

H.S.Auger S. Nelson BORING NO.
PAGE
REFERENCE ELEV.
TOTAL DEPTH
DATE COMPLETED

TB- 2 1 OF 2 5.96' 21.50' 12/21/88

SAMPLE NUMBER	SAMPLE TYPE	BLOW COUNT (per six inches)	GROWER	WFF.	SAMPLES	LITHO- LOGIC COLUMN	WELL DETAILS	LITHOLOGIC DESCRIPTION
1	3"	20-10- 8	- - - - -					0 - 0.6 foot: CONCRETE. (CON) 0.6 - 2.5 feet: GRAVELLY SAND; olive, fine to medium, 5-15% subround gravel to 2 inches in diameter, trace shells, dry, loose. Faint organic odor. (SW) (FILL) 2.5 - 20.5 feet: SAND; olive-grey, fine to medium, 5-10% subround gravel to 1 inch in
2	3" SS	3- 3- 9	- - <u>₹</u>	5-				diameter, trace to 5% shell fragments. Dark petroleum saturated gravelly zone at 6.0-6.5 feet, 10-15% gravel to 1 inch in diameter. Coarse sand layer at 7.3 feet, petroleum
3	3" SS	7- 5- 6	- -					saturated. Saturated below 5.7 feet. (SP) (FILL)
4	2* SS	3- 5- 8	-	-				@ 8.5 - 9.0 feet: SILTY SAND; dark
5	2* SS	5- 9-12		10 -				olive-black, fine to coarse @ 9.5-10.5 feet: GRAVELLY SAND; olive, coarse, 25% subround to round gravel to 1/2 inch in diameter, trace silt, saturated with petroleum.
6	3* SS	18-32-50		15 -				@ 16.0 - 16.3 feet: 10-15% subround gravel to 1 inch in diameter, petroleum odor decreasing.

REMARKS

1) Specific Location: Pit Separator. 2) H.S.Auger = Hollow Stem Auger. 3) SS = Split Spoon sample. 4) Water measurement at 5.66 feet BGS, at 9:40 on 12/21/88. See ADDITIONAL REMARKS in Description column.

SUFFT-FDUARDS/FMCON

594-07 03 CHEMP SMJ 04/12/89

LOG OF EXPLORATORY BORING

PROJECT NAME LOCATION DRILLED BY DRILL METHOD LOGGED BY Chemical Processors Pier 91

Tacoma Pump & Drill

OD H.S.Auger S. Nelson BORING NO.
PAGE
REFERENCE ELEV.
TOTAL DEPTH
DATE COMPLETED

TB- 2 2 OF 2 5.96' 21.50' 12/21/88

SAMPLE SLAPPE COUNTYPE (Per six per si	1 2000	ום עםנ		1163011			
20.5 - 21.5 feet SILTY SAND; olive, very fine, trace shell and wood debris, petroleum odor, saturated. (SM) Borehole terminated at 21.5 feet BGS on 12/21/88. ADDITIONAL REMARKS: 5) Reference elevation at ground surface (Pavement). WELL DETAILS - Boring has been abandoned with bentonite chips and asphalt or concrete.			COUNT (per six	GROUEN LEVELS	飛彈	COLUMN	
	7		18-16-14		30		trace shell and wood debris, petroleum odor, saturated. (SM) Borehole terminated at 21.5 feet BGS on 12/21/88. ADDITIONAL REMARKS: 5) Reference elevation at ground surface (Pavement). WELL DETAILS - Boring has been abandoned with bentonite chips and asphalt or

REMARKS

1) Specific Location: Pit Separator. 2) H.S.Auger = Hollow Stem Auger. 3) SS = Split Spoon sample. 4) Water measurement at 5.66 feet BGS, at 9:40 on 12/21/88. See ADDITIONAL REMARKS in Description column.

SUFET-EDWARDS /FMCON

594-07 03 CHEMP SMJ 04/12/89

Sweet, Edwards & Associates, Inc.

BORING LOG

//Locking	C P	ROJECT	- Ch	emp	ro, Pi	er 91			Page_	1_ of _1_
_	Location _	See F	igure 2	2.1					CP-104-A Mobil B-56 wi thod 7.5"O.D. Hollo	th 4.25" I
	Surface El									illing
Cas	Total Dept	h1	5'					ed By		
n Mo	Date Comp	leted_	11/28	8/87			Logg	ged By	S. R. Henshaw	
Flush Mount Security Ca	WELL DETAILS	PENE- TRATION TIME/ RATE	DEPTH (FEET)	SA NO.	TYPE	PERME- ABILITY TESTING	SYMBOL	ЦТН	OLOGIC DESCRIPTION	WATER QUALITY
Concrete				No	Sampl	e	SP	mediu	SAND, m grained, cuttings e wet at 6', gray.	
Con		Je ,	- 10	101 -A	SPT		GW	10-12	' GRAVELLY SAND,	
Hydrated Bentonite		2-inch Schedule 40 PVC Casing	- 20	No.	Sampl	0.	SM .	10-20 less fragm to co gray, basal metav odor, 12-15 5-10% 60% m silt, petro	subrounded gravel, than 5% shell ents, medium arse grained sand, gravels are ts, quartzite, olcanics, petroleum saturated. ' SILTY SAND, pebble size sand, edium sand, 30% gray, strong leum odor, sat.	

LOG OF EXPLORATORY BORING

PROJECT NAME LOCATION DRILLED BY DRILL METHOD Chemical Processors

Pier 91

Tacoma Pump & Drill

H.S.Auger S. Nelson

BORING NO. PAGE

1 OF 1 5.10'

REFERENCE ELEV. TOTAL DEPTH DATE COMPLETED

17.00 12/29/88

CP-107

SAMPLE NUMBER	SAMPLE TYPE	BLOW COUNT (per six inches)	GROUEN LEVELS	张 界.	SAMPLES	LITHO- LOGIC COLUMN	WELL DETAILS	LITHOLOGIC DESCRIPTION
1	3" SS	29-49-25	-	-				0 - 0.3 foot ASPHALT. (AS) 0.3 - 2.0 feet GRAVELLY SAND; light to dark brown, fine to medium, 25% subangular gravel to 3 inches in diameter, 0-5% silt, dry, compact. (SW) (FILL) 2.0 - 3.6 feet: SAND; light olive, fine to medium, 10% subround gravel to 2 inches in
2	3" SS 3"	16-21-25 8-13-18	_ - - 포	5-				diameter, 10% shell debris, dry. (SP) (FILL) 3.6 - 12.0 feet: GRAVELLY SAND; light to medium olive, fine to medium, 20-30% subround gravel to 2 inches in diameter.
4	SS 3" SS	7-10-13	- - -	•				0-5% shell debris. Saturated, with oily odor below 6.0 feet. Some silt and coarse sand layers below 6.0 feet. (SW) (FILL)
5	3"	7-10-11		10	-			12.0 - 15.8 feet: SAND; dark olive, medium to coarse, 5% subround gravel to 1 inch in diameter, trace shells. Petroleum odor, saturated. (SP) (FILL)
6	SS	/-14-16						15.8 - 16.5 feet: SILTY SAND; olive, 20-50% silt, fine to coarse sand; organic decay odor, saturated. (SM) Borehole terminated at 17.0 feet BGS on 12/29/88.

REMARKS

1) Specific Location: NC Warehouse. 2) H.S.Auger = Hollow Stem Auger. 3) SS = Split Spoon sample. 4) Water measurement at 6.0 feet BGS, at 11:00 on 12/29/88. 5) Reference elevation at top of PVC casing, City of Seattle datum.

594-07 03 CHEMO SMU 04/12/89

,42E	Elle.			Consul	ting Firm: Burlington	Date(s)	:10/10	0/92	- 10/	10/92
Ş.	BURI	INGT(ON ENTAL	Drilling	Contractor: Burlington	Elevatio	n:			
12.00	SOCA FINAL	KONM.	ENTAL	Drilling	Method: Hollow Stem Auger	Datum:	City	of Se	eattle D	atum
Locatio	n: Pier 9	1			d By: James Peale	Approve	d By:			
					e Casing: 0.00in N/A	From	0.0	to	0.0	ft
	cation: CP	-112			asing: 2.00in PVC	From	0.0	to	5.0	ft
	nit # 046927	iani Nor	Permit Date: 09/08/92	-	Pack: 10-20 Silica	From	4.0	to	15.0	ft
remarks:	Specific Locat Reference Ele	vation: T	th of Whse 39 op of Casing	-	ize: 0.010in	From	5.0	to	15.0	ft
				Seal Type:	No. 1 Grout	From	0.0	to	4.0	ft
		T			No. 2 Bentonite	From	1.0	to	4.0	- 10
o DEPTH (feet)	SAMPLE (REC %) SAMPLE NO.	GRAPHIC LOG	CONCRETE (CR)	N	Material Description				Well	
5.00 - - 10- 15.00 -	2-4 4-6 6-8 8-10 10-12 12-14 14-16		SAND (SM), dark gray bro slightly damp, r SILTY CLAYEY SAND (SM— medium plastic. SILT (MH), dark gray, bla SANDY GRAVEL (GP), dark GRAVELLY SAND (SW), dar	own, fine- nonplastic. SC), dark ck lamina gray, fin k gray, fi	medium—grained, trace coarse gravel, to medium—grained, some fine grave gray, fine—grained, some clay, some tions, wet, medium—highly plastic. To e gravel, fine—grained sand, wet. To e gravel, slightly plastic. To = 16.00 feet	el, some silt,			CD=15	5.00
- 20 - 25.00 - - 30 -										
35.00 -										
45.00 -										
- 55.00 -										

Table 3.3. Summary of Groundwater Testing Results - Organics and Metals Pier 91, Chemical Processors, Inc., Seattle, Mashington

Well Number: Sampling Date: Description: Sample Code:	HA-1 12/01/87 6dwtr C91-12187-1	HA-2 12/01/87 6dwtr HA-2	CP-104-A 12/04/87 6dwtr CP 12487-A	CP-103-A 12/04/87 6dwtr CP 12487-B	CP-103-B 12/04/87 6dmtr CP 12487-C	8-101 12/04/87 6d±tr CP 12487-D	CP-106-A 12/04/87 6dwtr CP 12487-F	CP-106-A Dup. 12/04/87 6d*tr CP 12487-6	Station 10 12/04/87 6dwtr CP 12487-H City of Seattle Wel	CP-105-8 12/01/87 6dwtr C91-12187-3	CP-105-9 Dup 12/01/97 6d=tr C91-12187-2	12/01/87 6d=tr
olatiles (ug/L)		*****										
Vinyl Chloride	1	NA	19	1		1	1	1	1	1		
Chloroethane	1	NA	20	1	1	8.4	;	i		i	;	i
Chlorofora	1	NA	1	2.7	8.4	1		3.3		i	;	i
Trichloroethene	1	NA			1	1	2.3		:		;	
1,1-Dichloroethane	1	MA	70	1	1	7.8	4.4	4.4	:	:	:	:
trans-1,2-Dichloroethene	1	MA	3.6	1		1	3.0	3.1	:	:	:	:
1,1,1-trichloroethane	i	MA	2.1		1	1		ı		:	:	:
	i	NA	160		2100	1	1	1				
Acetone	:	NA	15	1	82	1	1	1	1			•
2-Butanone	:	MA	7.2	1	:	4.9	1	1	17			
Benzene	:	NA	10	1		2.3	1	2.1	5.2	1		
Taluene	:	MA	2.4			1	1	1	10			
Ethyl Benzene	:	NA	12		1	9.4	1	1	2.5	1	1	
Total Tylenes	•	, nn	**									
Basa/Neutrals/Acids (ug/L) Acenaphthene Fluorene Phenanthrene Mapthalene 2-Hethylnapthalene Bis(2-ethlyhexyl)phthalate	; ; ; ; 48	\$ 1300 1800 \$ 3400 4900	24 8 8 8 8	1 1 1 1 1 2 20	1 1 1 1 1	1 1 1 1	2 2 2 2 150	‡ ‡ ‡ 3	\$ \$ \$ \$ 20 \$ \$ \$	1	1	1 1 1 1
Pesticides and PCBs (ug/L)										·	1	1
alpha-BHC		0.3	1	1	1	1	i	1	1	i	1	1
Aroclor-1250	ı	19	1	1	1	•	•					
Cyanides (ag/L)											.,	
***************************************	, 1(b)	MA	0.10	1	0.09	0.02	1		1	1(5)	1(5)	0.035(b)

Table 3.3. Summary of Groundwater Testing Results - Organics and Metals Pier 91, Chemical Processors, Inc., Seattle, Washington

page 2 of 2

Mell Number: Sampling Date: Description: Sample Code:	HA-1 12/01/87 6dwtr C91-12187-1	HA-2 12/01/87 Gdwtr HA-2	CP-104-A 12/04/87 6dwtr CP 12487-A	CP-103-A 12/04/87 6dwtr CP 12487-B	CP-103-B 12/04/87 6dwtr CP 12487-C	B-101 12/04/87 Gdwtr CP 12487-D	CP-106-A 12/04/87 6dwtr CP 12487-F	CP-105-A Dup. 12/04/87 6dwtr CP 12487-6	Station 10 12/04/87 Gdwtr CP 12487-H City of	CP-105-9 12/01/87 6dwtr C91-12187-3	CP-105-3 Du 12/01/87 6dwtr C31-12167-2	p. CP-103-A 12/01/87 6dwtr C91-12187-3
Petroleum Hydrocarbons (mg/L)	1										••••••	
Weathered Fuel Oil No.2	2300	NA	NA	NA	NA	MA	NA	NA	MA	NA	NA	MA
Total Metals (mg/L)											**********	************
Arsenic	0.048	NA	0.017	0.012	1		0.012	0.013	1	1	1	0.004
Cadaius	0.016	NA	1	1	. 1	1	1	:	1	. 1	1	0.005
Chrosius	0.1	NA	0.09	0.011	1	:	0.07	0.08	1	1	1	1
Copper	0.39	NA	0.1	0.037		:	0.051	0.065	1	1	ı	0.007
Lead	0.91	NA	0.042	0.037	1	0.003	0.034	0.047	1	1	1	1
Hercury	0.0011	NA	0.0002	0.0002	1	:	0.0001	0.0002	0.0001			1
Nickel	0.18	NA	0.14		0.04	1	0.09	0.12	:	1	1	1
Zinc	1.5	NA	0.12	0.02	ı	1	0.1	0.13		ı	1	1
Dissolved Metals-Filtered (mg	/L)	NA		0.009					1	NA A		AN.
Copper	NA.	MA	•	9.007	•							

Coasents:

- 1. Analytes are not shown on summary table when not detected at any sampling points.
- 2. All values reported are greater than sinious detection level.
- 3. (#) Analyte not detected, or detected below minimum detection level.
- 4. (NA) Analyte not analyzed.
- 5. Sampling Dates: Monitoring well borings (soils): December 1-4, 1987.
- 5. Sample analysis performed by Erco Laboratories. 7. Station 10 is located adjacent to 8-102. 8-102 could not be located and is assumed destroyed.
- S. (b) Laboratory data not available. Values shown were obtained from summary sheets
 - in the A.D. Little Draft Report: Pier 91 Facility Analytical Data, February 18,1998, Appendix F.

Table 1. Pier 91 Groundwater Data

17-Feb-89 PIER 91 FIELD SAMPLE DATA

PIER 91 SITE Sample Period: 12-37

The state of the s					Sample	Period: 13	237							
Not within limits:#												310		
Trace: *													INE E	105-A
Well Number:		HA-1	HA-2	CP 105.5	CP 104	CP 103-A	CF 103-B	8-101	CP 106	CP 106	CP 106	B-102	105-8	
Date:		12/01/87	12/01/87	12/01/87	12/04/87	12/04/87	2/04/87	12/04/87	12/04/87	12/04/87		12/04/87	12/01/87	12/01/87
Description:		6dwtr	Gdwtr	Gdwtr	6dutr	Edutr	Bdwtr	Gdwtr	Bdwtr	Gdwtr		6dwtr	6dutr	6dwtr
		91-12187-1	Dunci	C91-12187-2	The second second	CP 12487-BC	12487-C	CP 12487-D	CP 12487-F	CP 12487-6	CP12387F	CP 12487-H	C91-12187-3	C91-12187-5
Sample Code:	L	71-12157-1		C11 12101 2	DI 12107 H					Field	Lab	Station 10		
										Duplicate	Duplicate	City of		
												Seattle Wel	1	
											-			
											• "			
				Fluoranthene,										
Phthalates			fyrene, Chr	ysene										
		102		484	(20 ±	20	(20	(20 1	150	⟨20 +	(40 =	(20 t	(20 ₺	(20
bis(2-Ethylhexyl)phthalate		48	4900	(20 ₽		(20	(20	(20	(20	(20	(40	(20	(20	(20
Di-n-butyl phthalate		(40	(800	(20	(20	(20	(20	(20	(20	120				
Phenols														
			4844	(20	(20	(20	(20	(20	(20	(20	(40	(20	(20	(20
4-Methylphenol		(40	(800	(20	(20 1	(20	120	120	120	120				
			0	Present	Present	Present	fresent	Present	Present	Present		Present	Fresent	ND
Semivolatile Unknowns		Present	Present	rresent	tresent	HESENC	Tresent	11636116						
Semivolatile Surrogates									*					
	21-100	59		58	48	67	49	54	49	66	94	71	59	29
	10-94	52		59	30	49	39	50	37	43	77	54	46	38
an imenat		66		64	50	80	63	77	67	77	89	84	44	52
	10-123 35-114	72		66	51	86	60	88	63	89	109	87	77	60
	43-114	60		62	49	77	57	81	57	81	92	79	67	63
		69		74	48	74	54	92	59	90	94	90	74	58
d14-p-Terphenyl	33-141	67		- 13	10	• • •	•							
Pesticides and PCBs, ug/L														
resticides and ruos, ug/c		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
aloha-BHC		N.	0.3											
Aroclor-1260			19											
AF GE107-1280			• •											
Cyanides, ag/L														
=======================================	=	(0.010		(0.010	0.10	(0.02	0.09	0.02	(0.02	(0.02		(0.02	(9.010	0.083
Petroleum Hydrocarbons, m	q/L	2300												
******************		Weathered F	Fuel Dil											
		No. 2												
Ictal Metals, ag/L														
	=	21.02000			A A47	0.012	(0.003	(0.003	0.012	0.013	(.03	(0.003	(0.003	0.004
Arsenic		0.048		(0.003	0.017		(0.005	(0.005	(0.005		(0.005	(0.005	(0.03	0.005
Cadeiue		0.016		(0.03	(0.005		(0.00	(0.01	0.07		0.09	(0.01	(0.05	(0.01
Chronius		0.1		(0.05	0.09		(0.006	(0.006			0.052	(0.006		0.007
Copper		0.39		(0.03	0.1		(0.002				0.06	(0.002		(0.008
Lead		0.91		(0.006	0.042		().0001	(0.0001	0.0001		(.0004	0.0001	(0.0001	(0.0001
hercury		0.0011		(0.0001	0.0002		0.04				(88.88.88.8	(0.04	(0.2	(0.04
Nickel		0.18		(0.2	0.14	(0.04	. 0.01		3,44					

Table 1. Fier 91 Groundwater Data

17-Feb-88 PIER 91 FIELD SAMPLE DATA

PIER 91 SITE Sample Period: 12-37

					ou-pit									
Not within limits:& Trace: & Well Number: Date: Description: Sample Code:	HA- 12/01 6d: C91-1:	/87	HA-2 12/01/87 6dwtr	CP 105.5 12/01/87 6dwtr C91-12187-2	CP 104 12/04/87 60mtr CP 12487-A	CF 103-A 12/04/87 6dwtr CP 12487-B0	12/04/87 Sdwtr	B-101 12/04/87 6dwtr CP 12487-5	CP 106 12/04/87 6dwtr CP 12487-F	CP 106 12/04/87 6dwtr CP 12497-6 Field Duplicate	CP 106 CP12387F Lab Duplicate	P1D B-102 12/04/E7 6dwtr CP 12487-H Station 10 City of Seattle Wel		105-A 12/01/97 60wtr E9!-12187-5
Chlorinated														
						,,	(5	(5	(5	(5	(5	(5	(5	(5
Vinyl chloride		(5	N	(5	19	(5		8.4	(5	(5	(5	45	(5	(5
		(5	0	(5	20	(5	(5			(2	(2	(2	(2	₹2
Chloroethane		(2	ī	(2	(2	2.7	8.4	(2	(2		2.7	(2	(2	(2
Chlorofora		(2		(2	(2	(2	(2	(2	2.3	3.3		(2	(2	(2
Trichloroethene			A	(2	70	(2	(2	7.8	4.4	4.4	4.5		(2	(2
. 1,1-Dichloroethane		(2	100	(2	3.6	(2	(2	(2	3.0	3.1	3.1	(2		(2
trans-1,2-Dichloroethene		(2	N		2.1	(2		(2	(2	(2	(2	(2	(2	(2
1,1,1-trichloroethane		(2	A	<2	2.1	12		0.5-0						
			L				1							
Non-chlorinated			Y				1							
NON CHIOTIMACES			1						(50	(50	⟨50	₹50	(50	(50
		(50	E	<50	160	(50		(50		(10	(10	(10	(10	(10
Acetone		(10	a	(10	15	(10	82	(10	<10	CIU	(It	110		
2-Butanone		(10					1							
							1							
Aromatics												17	(2	(2
		/2		(2	7.2	(2	< 2	4.9	(2	(2			(2	(2
Benzene		<2		(2				2.3	(2		<2			
Toluene		(2							(2	(2	(2		(2	(2
Ethyl benzene		(2		(2					(2	(2	(2	2.5	(2	(2
Total xylenes		(2		<2										
							ì							
						t N) Present	Present	Present	Present	NA	Fresent	ND	ND
Volatile Unknowns	Pi	resent		NI NI	Present	["	, ilesem							
							1							
Volatile Surrogates							į						00	01
	Limits					4 10	0 ! 10	103	107	99				
d4-1,2-Dichloroethane	76-114	101		91	•	•			103	99	101			
d8-Toluene	68-110	102		10	•	7				122	108	99	100	103
p-Broaofluorobenzene	85-115	119	1	10	9 11	5 10	3 10	, ,,,,						
, 0,000,000							î							
Semi-volatile Organics,													0 + (2)	
						24 (2	20 (00 (2	0 (2	G . (2)	0 # (4		N 1000	
Acenaphthene		(40		B00 <2		745		• • • • • • • • • • • • • • • • • • • •			0 4 (4		0 1 (20	
Dibenzofuran		(46	- (800 (2		20 t (3					0 1 (4	•	ŷ • (3)	
		(40	1	300 (2	20 (• * · · · · · · · · · · · · · · · · · ·	20 (• • · · · · · · · · · · · · · · · · · ·				6 (2	9 1 (2)	
Fluorene		(40		800 (20 (20 + (20 (2	•	-	•		0 - (2)	0 (20
Phenanthrene		(40	- ,-			20 (• •	0 # (2	•			0 . (2	
Naphthalene							20 (20 (2	0 + (2	0 (2			1.	
2-Methylnaphthalene		(40											.1	
			irace 1	evels of									È	

Table 3-12

Summary of Semi-Volatile Organic Compounds in Ground Water (ug/l)- Round 2 Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

SAMPLE NAME (CP-103-A	СР-103-В	CP-104-A	CP-104-B	CP-105-A	CP-105-B	CP-106	CP-107	CP-108-A	CP-108-B	CP-109	CP-110
PHENOL			8				222222222			========		
2-METHYLPHENOL			4									
4-METHYLPHENOL	380		36	•				•			2	
2-4-DIMETHYLPHENOL			14									
NAPTHALENE			22								6	
2-METHYLNAPTHALENE			18		14			1600	2		120	130
ACENAPTHENE			66					78			5	12
DIBENZOFURAN			26					230	3		7	12
DIETHYLPHTALATE			7						-		•	
FLUORENE			30					430	2		13	50
PHENANTHRENE			14		5			600	2		18	50
ANTHRACENE			2					23	2		16	63
FLUORANTHENE								79	3			4
PYRENE								58			3	9
BUTYLBENZYLPHTHALATE								36	2			9
BENZO(A)ANTHRACENE								20	2			7
BIS(2-ETHYLHEXYL)PHTHALATE	90	19	240	72	9			1200	2		2	
CHRYSENE					,			24	9	9	8	95
DI-N-OCTYL PHTHALATE	12		10	3				40	2			8
BENZO(B)&(K)FLUORANTHENE				-				22	,	-1		
BENZO(A)PYRENE								22	3			
INDENO(1,2,3-CD)PYRENE									1			
DIBENZ(A,H)ANTHRACENE									2			
BENZO(GHI)PERYLENE									1			
*	Blanks in	n table are	non-detect	ion or inter	rpreted as no	n-detection.			2		Pa	ge 1 of 1

^{*} Data have been adjusted, where appropriate, for blank detections.
* Compounds not detected in any samples are excluded from table.

COMMENTS:

^{*} Samples collected on 3/8/89.

^{*} Chemical testing by ARI, Seattle, WA.

Summary of Volatile Organic Compounds in Ground Water (ug/l) - T-Borings and Round 1 Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

SAMPLE NAME	CP-103-A	CP-103-B	CP-104-A	CP-104-B	CP-105-A	CP-105-B	CP-106	CP-107	CP-108-A	CP-108-B	CP-109
VINYL CHLORIDE		=======================================	25					4.3			
CHLOROETHANE	5.4	15	21					110	7.7		76
METHYLENE CHLORIDE			6.8		4.1						
ACETONE	41	28	200	19					21		210
1,1-DICHLOROETHENE								3.3			
1,1-DICHLOROETHANE	0.9	2.3	41	0.9			5.4	3.6	3.1		3.4
1,2-DICHLOROETHENE (TOTAL	.)		9.9				3.3	2.4			1.2
CHLOROFORM				0.3					5.8		
1,2-DICHLOROETHANE											
2-BUTANONE			30								
TRANS-1,2-DICHLOROETHENE											
CIS-1,2-DICHLOROETHENE											
1,1,1-TRICHLOROETHANE		×	4.2								
1,1,2-TRICHLORO- 1,2,2-TRIFLUROETHANE			16								
TRICHLOROETHENE			1.6				3.7				
BENZENE	4.9	12	8.3					1.1	18	1.4	35
2-METHYL-2-PENTANONE						×					
TETRACHLOROETHENE							1.3				
TOLUENE	7.2	6.3	21		0.2	0.6	1.3		7.6	2.2	5.1
ETHYLBENZENE		*	7.9	0.6					0.7		
TOTAL XYLENE	2.4	4.3	24	. 1	0.6	0.5		6	2.1		27

^{*} Blanks in table are non-detection or interpreted as non-detection.
* Data have been adjusted, where appropriate, for blank detections.

Comments:

^{*} Compounds not detected in any samples are excluded from table.

^{*} Duplicate samples were averaged.
* Samples collected from 12/88 to 2/89.

^{*} Chemical testing by ARI, Seattle, WA.

Table 3-10 Summary of Volatile Organic Compounds in Ground Water (ug/l) - Round 2 Pier 91, Chemical Processors, Inc., Seattle, WA

SAMPLE NAME	CP-103-A	CP-103-B CP-104-A	CP-104-B	CP-105-A	CP-105-B	CP-106	CP-107	CP-108-A	CP-108-B	CP-109	CP-110
***************************************					.=======						
VINYL CHLORIDE		27				2.9	4.7				1.9
CHLOROETHANE		24					128			150	71
METHYLENE CHLORIDE	21	1.2 4.5	1.5		0.5	1.7	0.7	4.0	3.6	1.5	
ACETONE		20			8.8	16	20				
CARBON DISULFIDE	2.2						140				
1,1-DICHLOROETHENE								0.9			
1,1-DICHLOROETHANE		46				7.4	3.8			3.7	
CIS-1,2-DICHLOROETHENE		18									
1,2-DICHLOROETHENE (TOTA	L)					6.9	3.5				2.0
CHLOROFORM	85							1.7			
2-BUTANONE		1.7									
1,1,1-TRICHLOROETHANE		3.8									3.
1,1,2-TRICHLORO- 1,2,2-TRIFLUROETHANE						1.6					
TRICHLOROETHENE		3.6				2.1					
BENZENE		5.9				1.0	7.9	5.0		34	15
TOLUENE	5.4	20	1.1				1.1	1.6		8.3	2.0
ETHYLBENZENE		5.5									
TOTAL XYLENES		20					4.9	1.6	1.1	5.9	1.5
	* Blanks * Data h	in table are non-d ave been adjusted,	etection o where appr	r interpre	ted as non or blank d	-detections	n.				

COMMENTS:

^{*} Data have been adjusted, where appropriate, for blank detection

* Compounds not detected in any samples are excluded from table.

* Samples collected on 3/8/89.

* Chemical testing by ARI, Seattle, WA.

Table 3-11 Summary of Semi-Volatile Organic Compounds in Ground Water (ug/l) - T-Borings and Round 1
Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

Comments on Page 2

CP-104-B CP-105-A CP-105-B CP-106 CP-107 CP-108-A CP-108-B CP-109 CP-103-A CP-103-B CP-104-A SAMPLE NAME PHENOL 3 0.5 2-METHYLPHENOL 26 0.5 4-METHYLPHENOL 7 2,4-DIMETHYLPHENOL 3 NAPTHALENE 11 4-CHLORO-3-METHYLPHENOL 12 450 5.6 160 1 2 10 57 2-METHYLNAPTHALENE 45 **ACENAPHTHYLENE** 26 40 1.3 **ACENAPTHENE** 4-NITROPHENOL 29 3.6 **D1BENZOFURAN** 12 19 12 10 130 3.8 FLUORENE 15 200 2.3 26 4 PHENANTHRENE ANTHRACENE **FLUORANTHENE** 1.3 PYRENE BENZO(A)ANTHRACENE 4.3 15 21 3 3 340 BIS(2-ETHYLHEXYL)PHTHALATE 1.7 DIETHYLPHTHALATE CHRYSENE 1 1.3 DI-N-OCTYL PHTHALATE BENZO(K)FLUORANTHENE BENZO(A)PYRENE INDENO(1,2,3-CD)PYRENE DIBENZO(A, H) ANTHRACENE BENZO(GHI)PERYLENE

File Name: Water1.wr1 Revised: April 20,1988 LMS

Table 3.3. Susmary of Groundwater Testing Results - Organics and Metals Pier 91, Chemical Processors, Inc., Seattle, Mashington

page 1 of 2

Well Number: Sampling Date: Description: Sample Code:	HA-1 12/01/87 6dwtr C91-12187-1	HA-2 12/01/87 6dwtr HA-2	CP-104-A 12/04/87 6dwtr CP 12487-A	CP-103-A 12/04/87 6dwtr CP 12487-B	CP-103-B 12/04/87 6dwtr CP 12487-C	B-101 12/04/87 6dwtr CP 12487-D	CP-106-A 12/04/87 Edwtr CP 12487-F	CP-106-A Dup. 12/04/87 6dwtr CP 12487-6	. Station 10 12/04/87 6dwtr CP 12487-H City of Seattle Wel	CP-105-B 12/01/87 6dwtr C91-12187-3	CP-105-B Dup 12/01/87 6d*tr C91-12187-2	. CP-105-A 12/01/87 6dwtr C91-12187-5
Volatiles (ug/L)											***********	
			19	1	1	1	1	1	1	1		1
Vinyl Chloride		NA	20	i	1	8.4	1			1	t	1
Chloroethane	1	NA	1	2.7	8.4	1	1		1	1	1	1
Chlorofora	1	NA		1	1	1	2.3	3.3		1	1	1
Trichloroethene	1	NA	1	•	i	7.8	4.4	4.4	:	1	1	1
1,1-Dichloroethane	1	NA	70		•	1	3.0	3.1	1			1
trans-1,2-Dichloroethene	1	NA	3.6			i	1	1	1	1	1	
1,1,1-trichloroethane	1	NA	2.1	1			;	i	1	1	1	1
Acetone	1	NA	160	ı	2100	•		:	i	1	1	1
2-Butanone	1	NA	15	1	82		ı	i	17	,		1
Benzene	1	NA	7.2	1	1	4.9		2.1	5.2	· ·		,
Toluene	1	NA	10	1	1	2.3		7.5.7		i	:	
	1	NA	2.4	1	1	1	1	1	10	i	:	:
Ethyl Benzene Total Tylenes		NA	12	1	1	9.4	\$	1	2.5		•	•
Base/Neutrals/Acids (ug/L)									1		1	1
Acenaphthene	1	1	24	1	1	1	1	:	1	i	i	i
Fluorene		1300	1	1	1	1	1	1			i	1
Phenanthrene	1	1800	1	1	1	:	1	1	20		i	i
	i	1		t	1	1	ı	1	20	1	i	i
Napthalene	i	3400	:	1	1	:	1	1	•	:		1
2-Methylnapthalene Bis(2-ethlyhexyl)phthalate	•	4900	1	20	1	ı	150	150		•	•	
Pesticides and PCBs (ug/L)												1
alpha-BHC	ı	0.3	1	1	1	1	1	1	:	:	1	1
Aroclor-1250	i	19		1	1	1		•	ř	•		
HLDC LOL-173A												
Cyanides (ag/L)										4/1	#(b)	0.033(b)
	\$(b)	NA	0.10	1	0.09	0.02	ı	1	1	1(9)	*1.*/	******

4 347

Table 3-11

Summary of Semi-Volatile Organic Compounds in Ground Water (ug/l) - T-Borings and Round 1 Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

SAMPLE NAME	CP-110	TB-1	тв-2	тв-3	тв-4	TB-5	TB-6	TB-7	
PHENOL		=======================================	150	1.8	160			6.05	
2-METHYLPHENOL			110		22				
4-METHYLPHENOL			195		80			9.9	
2,4-DIMETHYLPHENOL			220	1.3	130			86	
NAPTHALENE		3	380		27		42	29	
4-CHLORO-3-METHYLPHENOL				25					Comments:
2-METHYLNAPTHALENE	75	2	1050		18		36	26	 Blanks in table are non-detection or interpreted as non-detection.
ACENAPHTHYLENE									 Data have been adjusted, where appropriate, for blank detections.
ACENAPTHENE		1	65	1.9			3	1.2	 Compounds not detected in any samples are excluded from table.
4-NITROPHENOL					3.5				* Duplicate samples were averaged. * Samples collected from 12/88 to 2/89.
DIBENZOFURAN	11	1	84				15	1.5	* Chemical testing by ARI, Seattle, WA.
FLUORENE	29	2.5	170	3.4			18	2.3	
PHENANTHRENE	33	3 2	320	1.7			30	7	
ANTHRACENE			20				2		
FLUORANTHENE		3.5	45	1.2			6		
PYRENE		3	57	1.8			7		
BENZO(A)ANTHRACENE							5	£	
BIS(2-ETHYLHEXYL)PHTHALA	TE 11	0 72.5	1000	62	13	69	68	46	
DIETHYLPHTHALATE									
CHRYSENE			- 23	1.3					
DI-N-OCTYL PHTHALATE									
BENZO(K)FLUORANTHENE				1.6			4		
BENZO(A)PYRENE		1		1.1			3		
INDENO(1,2,3-CD)PYRENE				1.8					
DIBENZO(A,H)ANTHRACENE				1.1					
BENZO(GHI)PERYLENE				1.5					Page 2 of 2

Table 3-9 Summary of Volatile Organic Compounds in Ground Water (ug/l) - T-Borings and Round 1 Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

SAMPLE NAME	CP-110	TB-1	TB-2	TB-3	TB-4	TB-5	TB-6	TB-7
VINYL CHLORIDE	1.5	14	38	4.1				
CHLOROETHANE	43		1800				14	
METHYLENE CHLORIDE		0.8	95	7.2		2.2	13	.385
ACETONE			2900	18				450
1,1-DICHLOROETHENE		10.5	950	21			2.5	
1,1-DICHLOROETHANE	2.7							
1,2-DICHLOROETHENE (TOTAL	.) 2			2.7				
CHLOROFORM				1.2				69
1,2-DICHLOROETHANE				1.1				
2-BUTANONE			2400	3.8				
TRANS-1,2-DICHLOROETHENE		*	34					
CIS-1,2-DICHLOROETHENE		7.3	20					
1,1,1-TRICHLOROETHANE		1.6						
1,1,2-TRICHLORO- 1,2,2-TRIFLUROETHANE		51						76
TRICHLOROETHENE		6.4		1.5				
BENZENE	15	2	97	1.6			29	
2-METHYL-2-PENTANONE			1000					
TETRACHLOROETHENE				1.4				
TOLUENE	1.6	4.3	2400	3.5	60000	2.3	13	15000
ETHYLBENZENE			480	32	29000	4.4	6.9	16000
TOTAL XYLENE	1.6	3.2	1100	1.2	70000	13	24	41000

Page 2 of 2

^{*} Blanks in table are non-detection or interpreted as non-detection.

* Data have been adjusted, where appropriate, for blank detections.

* Compounds not detected in any samples are excluded from table.

* Duplicate samples were averaged. Comments:

^{*} Samples collected from 12/88 to 2/89. * Chemical testing by ARI, Seattle, WA.

File Name: Soil.wrl Ravised: April 20, 1989 LMS

Table 3.2. Suamary of Soils Testing Results - Organics and Metals Pier 91, Chemical Processors, Inc., Seattle, Washington

CP-103-B 11/28/87 Soil 103A 20-21.5	CP-103-B 11/29/87 Soil 1038 30-31.5	CP-103-B 11/29/87 Soil 103C 40-41.5	CP 103-B 11/29/87 Soil 103D 65.5-66.5	CP-104-A 11/28/87 Soil 104A 10-12	CP-105-B 11/24/87 Soil 1056,B 4-10 Composite	CP-105-B 11/24/87 Soil 105C,D,E 14-35 Composite	CP-105-B 11/25/87 Soil 105F 56-58	CP-106-A 11/23/87 Soil 106A 9-12
1	:	1	1	1	1	1	1	160

2.2	4.8	2.0	5.2	4.4	3.4	5.0	8.5	3.2
1	1		1	:	1	:		1
8	15	13	17	11	12	13		10
5	4	2	5	7	8	5		2
1.6	1.0	0.6	1.0	1.0	4.4	1.6	2.8	2.8
1000			23	21	16	18	45	15
			20	20	17	16	44	15
	11/28/87 Soil 103A 20-21.5	11/28/87 11/29/87 Soil Soil 103A 103B 20-21.5 30-31.5	11/28/87 11/29/87 11/29/87 Soil Soil Soil 103A 103B 103C 20-21.5 30-31.5 40-41.5 2.2 4.8 2.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/28/87 11/29/87 11/29/87 11/29/87 Soil Soil Soil Soil Soil 103A 103B 103C 103D 20-21.5 30-31.5 40-41.5 65.5-66.5 1	11/28/87 11/29/87 11/29/87 11/29/87 11/28/87 Soil Soil Soil Soil Soil Soil 103A 103B 103C 103D 104A 20-21.5 30-31.5 40-41.5 65.5-66.5 10-12 2.2 4.8 2.0 5.2 4.4 1 1 1 1 1 8 15 13 17 11 5 4 2 5 7 1.6 1.0 0.6 1.0 1.0 14 24 16 23 21	11/28/87 11/29/87 11/29/87 11/29/87 11/28/87 11/24/87 Soil Soil Soil Soil Soil Soil Soil 103A 103B 103C 103D 104A 105A,B 20-21.5 30-51.5 40-41.5 65.5-66.5 10-12 4-10 Composite 2.2 4.8 2.0 5.2 4.4 3.4 1 1 1 1 1 12 8 15 13 17 11 12 5 4 2 5 7 8 1.6 1.0 0.6 1.0 1.0 4.4 14 24 16 23 21 16	11/28/87 11/29/87 11/29/87 11/29/87 11/28/87 11/24/87 11/24/87 Soil Soil Soil Soil Soil Soil Soil Soil	11/29/87 11/29/87 11/29/87 11/29/87 11/29/87 11/24/87 11/24/87 11/25/87 Soil Soil Soil Soil Soil Soil Soil Soil

Cossents:

- 1. Analytes are not shown on summary table when not detected at any sampling points.
 2. All values reported are greater than minimum detection level.
 3. (1) Analyte not detected, or detected below minimum detection level.
 4. Sampling Dates: November 24-29, 1987.
 5. Sample analysis performed by Erco Laboratories.

Table 3-8

Summary of Semi-Volatile Compounds in Soil (ug/kg) Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

Sample Name	TB-1-0-5	TB-1-6-10	тв-1-2.5	TB-1-15	TB-1-20	TB-2-0-5	TB-2-6-10	тв-2-2.5	TB-2-15	TB-2-20
PHENOL										
2,4-DIMETHYLPHENOL										
NAPHTHALENE						4200	4300	91	760	100
2-METHYLNAPTHALENE		230				15000	17000	100	1700	290
ACENAPHTHENE		32				880	660		230	
DIBENZOFURAN		49				1100	1200		180	
FLUORENE		95				2000	3900		570	180
PHENANTHRENE	22	210	40			4600	4000		1200	360
ANTHRACENE									71	
FLUORANTHENE		89	92		*	560	730		140	
PYRENE			150			910	480		210	,
BENZO(A)ANTHRACENE	23	30			•	480	400			
BIS(2-ETHYLHEXYL) PHTHALATE						330	480			84
CHRYSENE			97			530	380		79	
BENZO(B)FLUORANTHENE & BENZO(K)FLUORANTHENE			210			820				
BENZO(A)PYRENE	24		87			470				
INDENO(1,2,3-CD)PYRENE			86			490				
BENZO(GHI)PERYLENE			71			440				
DIBENZO(A, H)ANTHRACENE										
ACENAPTHYLENE										
DIETHYLPHTALATE			_							
DI-N-OCTYLPHTHALATE						11				

Comments:

^{*} Blanks in table are non-detection or interpreted as non-detection.

* Data have been adjusted, where appropriate, for blank detections.

* Compounds not detected in any samples are excluded from table.

* Samples collected from 12/88 to 1/89.

* Chemical testing by ARI, Seattle, WA.

Table 3-5

Summary of Volatile Compounds in Soil (ug/kg)
Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

SAMPLE NAME	TB-1-0-5	TB-1-6-10	TB-1-2.5	TB-1-15	TB-1-20	TB-2-0-5	TB-2-6-10	TB-2-2.5	TB-2-15	TB-2-20
METHYLENE CHLORIDE	3.6	8.3	5.7	170	8.7	2500	8700	7.3	12500	31
ACETONE								88		
1,1-DICHLOROETHANE						52				
1,2-DICHLOROETHANE (TOTAL)										
CHLOROFORM										
1,1,1-TRICHLOROETHANE			1.3			16				
1,1,2-TRICHLORO- 1,2,2-TRIFLUOROETHANE					,					
TRICHLOROETHENE	1.5		3.1			17				
BENZENE						40				
TETRACHLOROETHENE						78				
TOLUENE	0.8		1			29000	14000	3.6	940	71
CHLOROBENZENE										
ETHYLBENZENE						15000	9700	3.6	930	100
TOTAL XYLENE	1.9		2.6			34000	23000	8.5	2400	260

COMMENTS:

Page 1 of 8 .

^{*} Blanks in table are non-detection or interpreted as non-detection.

^{*} Data have been adjusted, where appropriate, for blank detections.

^{*} Compounds not detected in any samples are excluded from table.

^{*} Samples collected from 12/88 to 1/89.

^{*} Chemical testing by ARI, Seattle, WA.

SUMMARY OF TRACE METALS IN SOIL (mg/kg) Table 3-7 Pier 91 Facility, Chemical Processors, Seattle, WA

1		rn-1-4-10	тв-1-2.5	TR-1-15	TB-1-20	TB-2-0-5	TB-2-6-10	TB-2-2.5	TB-2-15	TB-2-20
SAMPLE NAME	1B-1-0-5	18-1-0-10			========				=======	========
	=========		, ,	2	3.4	2.9	2.3	5.3	1.4	1.4
ARSENIC	3.4	1.7	6.5	2	3.4					
CADMIUM			1.3		. 25	14	23	19	16	22
CHROMIUM	17	15	26	24		11	7.5	5.6	7.4	7.0
COPPER	70	8.9	2080	17	. 16	53	27	18	6.6	11
LEAD	30		124			23	21			
MERCURY							20	22	23	28
NICKEL	29	25	77	35	34	21	29		23	27
ZINC	52	21	242	28	28	66	38	33	23	

COMMENTS:

- * Blanks in table are non-detection or interpreted as non-detection. * Data have been adjusted, where appropriate, for blank detections.
- * Samples collected from 12/88 to 1/89
- * Chemical testing by CAS, Longview, WA

Table 3-6

Summary of Semi-Volatile Compounds in Soil (ug/kg) Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

Sample Name	TB-7-15	TB-7-20	TB-7-25	CP-107-0-5	CP-107-6-10	CP-107-2.5	CP-107-6.5	CP-107-15
PHENOL								
2,4-DIMETHYLPHENOL								
NAPHTHALENE	900							
2-METHYLNAPTHALENE	2400	400		9700	12000		29000	200
ACENAPHTHENE	120			570	850		700	66
DIBENZOFURAN	160			1000	2000		2500	84
FLUORENE	520			1900	4200		6100	170
PHENANTHRENE	1100	250		3400	6100		9000	180
ANTHRACENE					290		260	
FLUORANTHENE	150			510	960		1000	
PYRENE	22	40		450	860	67	640	
BENZO(A)ANTHRACENE				160	210	110	320	16
BIS(2-ETHYLHEXYL) PHTHALATE	500			~				
CHRYSENE	140	50		210	270	170	320	17
BENZO(B)FLUORANTHENE & BENZO(K)FLUORANTHENE				7.0				
BENZO(A)PYRENE				300	230	480	480	
INDENO(1,2,3-CD)PYRENE				130	130	200	100	
	,			96		150	. 140	
BENZO(GHI)PERYLENE				69		78	390	
DIBENZO(A, H)ANTHRACENE							420	·
ACENAPTHYLENE								
DIETHYLPHTALATE								
DI-N-OCTYLPHTHALATE	180		1					

^{*} Blanks in table are non-detection or interpreted as non-detection.

Comments:

^{*} Data have been adjusted, where appropriate, for blank detections.

* Compounds not detected in any samples are excluded from table.

* Samples collected from 12/88 to 1/89.

* Chemical testing by ARI, Seattle, WA.

Table 3-5

Summary of Volatile Compounds in Soil (ug/kg) Pier 91 Facility, Chemical Processors, Inc., Seattle, WA

SAMPLE NAME	TB-7-20	TB-7-25	CP-107-0-5	CP-107-6-10	CP-107-2.5	CP-107-6.5	CP-107-15
METHYLENE CHLORIDE			43	34			64
ACETONE	1400	22					
1,1-DICHLOROETHANE							
1,2-DICHLOROETHANE (TOTAL)							
CHLOROFORM		α.					
1,1,1-TRICHLOROETHANE							
1,1,2-TRICHLORO- 1,2,2-TRIFLUOROETHANE		3.2					
TRICHLOROETHENE							
BENZENE			 .	11			
TETRACHLOROETHENE							
TOLUENE	6500	630					
CHLOROBENZENE							
ETHYLBENZENE	12000	450	120	82		400	
TOTAL XYLENE	31000	4800	40	48			

COMMENTS:

Page 5 of 8

^{*} Blanks in table are non-detection or interpreted as non-detection.

^{*} Data have been adjusted, where appropriate, for blank detections. * Compounds not detected in any samples are excluded from table.

^{*} Samples collected from 12/88 to 1/89. * Chemical testing by ARI, Seattle, WA.

Table 3-7

SUMMARY OF TRACE METALS IN SOIL (mg/kg) Pier 91 Facility, Chemical Processors, Seattle, WA

				- 11	100 t 0 F	CP-108-A-6-10 C	P-108-A-2.5 C	P-108-A-15 CI	-108-A-20
SAMPLE NAME	CP-107-0-5	CP-107-6-10	CP-107-2.5	CP-107-15	CP-108-A-U-5			=========	=======
=============	==========	=========	=========		2	2.8	1.5	2	2
ARSENIC	1.6	1.7	2.4	3.7					
CADMIUM				18	12	13	12	16	20
CHROMIUM	12	18	14	5.4	9.7	6.8	7.3	6	7.3
COPPER	13	6.0	11	5.4	38				
LEAD	9.5		9.2						
MERCURY			10	27	21	21	21	22	28
NICKEL	20	22	19 63	22	. 32	17	16	18	20
ZINC	45	23	63		detection	or interpreted	as non-detect	ion.	

COMMENTS:

- * Blanks in table are non-detection or interpreted as non-detection.

 * Data have been adjusted, where appropriate, for blank detections.

 * Samples collected from 12/88 to 1/89

 * Chemical testing by CAS, Longview, WA

Total Metals in Soil Burlington Environmental Inc. Pier 91 Facility Page: 1A of 1B Date: 08/20/93

SITE	DATE	DEPTH	Silver mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Chromium mg/kg	Copper mg/kg	
CP-112	10/10/92	2.0	< 0.41	4.7	125	0.57	0.46	18.5	33.0	
CP-112	10/10/92	6.0	< 0.39	1.7	19.5	0.35	0.27	23.2	8.4	

< = Not detected at indicated reporting limit

^{--- =} Not sampled and/or analyzed

All values represent total concentrations unless noted

Page: 1B of 1B

Date: 08/20/93

Total Metals in Soil Burlington Environmental Inc. Pier 91 Facility

SITE	DATE	DEPTH	Mercury mg/kg	Nickel mg/kg	Lead mg/kg	Selenium mg/kg	Zinc mg/kg	
CP-112	10/10/92	2.0	0.043	33.7	36.1	< 0.42	41.2	
CP-112	10/10/92	6.0	<0.020	29.2	3.7	< 0.42	22.0	
			•					

Depths in feet below ground surface

Page: 1A of 1B

Date: 08/20/93

Semivolatile Organic Compounds Detections in Soil USEPA Method 8270 Burlington Environmental Inc.

					Pier 91 Facility				
SITE	DATE	DEPTH	Acenaphthylene ug/kg	Phenanthrene ug/kg	Anthracene ug/kg	Di-n-butyl phthalate ug/kg	Fluoranthene ug/kg	Pyrene ug/kg	Butyl benzyl phthalate ug/kg
CP-112	10/10/92	2.0	(620) J	(2200) J	(500) J	5900 B	3700	6600	(1900) JB
CP-112	10/10/92	6.0	<1000	<1000	< 1000	<1000	<1000	<1000	<1000
			•						
- Not date	ected at indicate	tad reportin	a limit	= Not sampled and	d/or analyzed	All values ren	resent total concentr	rations unless not	~ d

Page: 1B of 1B Date: 08/20/93

Semivolatile Organic Compounds **Detections in Soil USEPA Method 8270** Burlington Environmental Inc.

Pier 91 Facility

							Indeno		
SITE	DATE	DEPTH	Benzo(a) anthracene ug/kg	Chrysene ug/kg	Benzo(b) fluoranthene ug/kg	Benzo(a)pyrene ug/kg	(1,2,3-cd) pyrene ug/kg	Dibenz(a,h) anthracene ug/kg	Benzo(ghi) perylene ug/kg
CP-112	10/10/92	2.0	3000	3900	5600	3500	3000	(700) J	3200
CP-112	10/10/92	6.0	<1000	<1000	<1000	<1000	<1000	<1000	(110) J

< = Not detected at indicated reporting limit

--- = Not sampled and/or analyzed

All values represent total concentrations unless noted

Page: 1A of 1A Date: 08/20/93

Volatile Organic Compounds Detections in Soil USEPA Method 8240 Burlington Environmental Inc.

					Pier 91 Facility		
SITE	DATE	DEPTH	Methylene chloride ug/kg	Acetone ug/kg	2-Hexanone ug/kg	Toluene ug/kg	
CP-112	10/10/92	2.0	8.5 B	6.8 B	5.6	2.5	
CP-112	10/10/92	6.0	3.9 B	11 B	< 6.6	<1.3	

Hits only # = Highest of Multiple Results ??? = Duplicate Results Depths in feet below ground surface

Page: 1A of 1A

Date: 08/20/93

Total Petroleum Hydrocarbons **Detections in Soil**

USEPA Methods 418.1 and 8015 Modified

Burlington Environmental Inc.

				Pier	1 Facility
SITE	DATE	DEPTH	TPH 418.1 mg/kg	TPH USEPA Method 8015 (Modified) mg/kg	
CP-112	10/10/92	2.0	420	2400	
CP-112	10/10/92	6.0	64	120	
				•	
	ected at indicat				

= Highest of Multiple Results ??? = Duplicate Results

Depths in feet below ground surface

Page: 1A of 1A Date: 08/20/93

Polychlorinated Biphenyls
Detections in Soil
USEPA Method 8080
Burlington Environmental Inc.

					Pier 91 Facility				
SITE	DATE	DEPTH	PCB-1016 ppb	PCB-1221 ppb	PCB-1232 ppb	PCB-1242 ppb	PCB-1248 ppb	PCB-1254 ppb	PCB-1260 ppb
CP-112 CP-112	10/10/92 10/10/92	2.0 6.0	<33 <33	<33 <33	<33 <33	<33 <33	<33 <33	<33 <33	<33 <33

< = Not detected at indicated reporting limit

^{--- =} Not sampled and/or analyzed

Dissolved Metals in Groundwater Burlington Environmental Inc. Pier 91 Facility

		Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
SITE	DATE	Silver mg/l	Arsenic mg/l	Barium mg/l	Beryllium mg/l	Cadmium mg/l	Chromium mg/l	Copper mg/l	Mercury mg/l
CP-104A	04/05/93	<0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-104A	07/06/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-107	04/08/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-107	07/13/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-112	04/07/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-112	07/08/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
MW-39-3	04/14/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
MW-39-3	07/13/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.005	< 0.025	< 0.0002

< = Not detected at indicated reporting limit

^{--- =} Not sampled and/or analyzed

Values represent total concentrations unless noted

Dissolved Metals in Groundwater Burlington Environmental Inc. Pier 91 Facility

		Dissolved	Dissolved	Dissolved	Dissolved	
SITE	DATE	Nickel mg/l	Lead mg/l	Selenium mg/l	Zinç mg/l	
CP-104A	04/05/93	< 0.040	< 0.003	< 0.005	< 0.020	
CP-104A	07/06/93	< 0.040	< 0.003	< 0.005	< 0.020	
CP-107	04/08/93	< 0.040	< 0.003	< 0.005	< 0.020	
CP-107	07/13/93	< 0.040	< 0.003	< 0.005	< 0.020	
CP-112	04/07/93	< 0.040	< 0.003	< 0.005	< 0.020	
CP-112	07/08/93	< 0.040	< 0.003	< 0.005	< 0.020	
MW-39-3	04/14/93	< 0.040	< 0.003	< 0.005	< 0.020	
MW-39-3	07/13/93	< 0.040	< 0.003	< 0.005	< 0.020	

< = Not detected at indicated reporting limit

^{--- =} Not sampled and/or analyzed

Values represent total concentrations unless noted

Total Metals in Groundwater Burlington Environmental inc. Pier 91 Facility Page: 1A of 1B Date: 08/19/93

SITE	DATE	Silver mg/l	Arsenic mg/l	Barium mg/l	Beryllium mg/l	Cadmium mg/l	Chromium mg/l	Copper mg/l	Mercury mg/l
CP-104A	04/05/93	<0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-104A	07/06/93	< 0.010	0.010	<0.20	< 0.005	< 0.005	< 0.010	0.042	< 0.0002
CP-107	04/08/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-107	07/13/93	< 0.010	< 0.010	<0.20	<0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-112	04/07/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
CP-112	07/08/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
MW-39-3	04/14/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.010	< 0.025	< 0.0002
MW-39-3	07/13/93	< 0.010	< 0.010	< 0.20	< 0.005	< 0.005	< 0.005	< 0.025	< 0.0002

< = Not detected at indicated reporting limit

^{--- =} Not sampled and/or analyzed

Values represent total concentrations unless noted

Page: 1B of 1B Date: 08/19/93

SITE	DATE	Nickel mg/l	Lead	Selenium	Zinc mg/l
CP-104A	04/05/93	mg/l <0.040	mg/l <0.003	mg/l <0.005	<0.020
CP-104A	07/06/93	< 0.040	0.005	< 0.005	< 0.020
CP-107	04/08/93	< 0.040	< 0.003	< 0.005	<0.020
CP-107	07/13/93	< 0.040	< 0.003	< 0.005	<0.020
CP-112	04/07/93	< 0.040	< 0.003	< 0.005	< 0.020
CP-112	07/08/93	< 0.040	< 0.003	< 0.005	< 0.020
MW-39-3	04/14/93	< 0.040	< 0.003	< 0.005	< 0.020
MW-39-3	07/13/93	< 0.040	< 0.003	< 0.005	< 0.020

< = Not detected at indicated reporting limit

^{--- =} Not sampled and/or analyzed

Page: 1A of 1B

Date: 08/20/93

Semivolatile Organic Compounds Detections in Groundwater USEPA Method 8270 Burlington Environmental Inc. Pier 91 Facility

			2-Methyl				Hexachloro		
SITE	DATE	Naphthalene ug/l	naphthalene ug/l	Acenaphthene ug/l	Dibenzofuran ug/l	Fluorene ug/l	benzene ug/l	Phenanthrene ug/l	Anthracene ug/l
CP-104A	04/05/93	(5.5) J	(3.9) J	42	(4.8) J	27	<9.8	(4.0) J	(2.4) J
CP-104A	07/06/93	<10	<10	23	(2.6) J	(8.9) J	(3.2) JB	<10	<10
CP-107	04/08/93	<9.9	(3.6) J	(4.0) J	(1.8) J	(7.6) J	< 9.9	(3.4) J	< 9.9
CP-107	07/13/93	<10	(3.7) J	(3.1) J	(1.6) J	(6.2) J	<10	(2.5) J	<10
CP-112	04/07/93	<9.9	<9.9	<9.9	<9.9	< 9.9	< 9.9	<9.9	< 9.9
CP-112	07/08/93	<10	<10	(2.8) J	<10	<10	<10	<10	<10
MW-39-3	04/14/93	(3.2) J	35	(7.3) J	<10	10	<10	(4.2) J	< 10
MW-39-3	07/13/93	(1.4) J	27	(4.6) J	(1.3) J	(6,9) J	·<10	(3.0) J	<10

< = Not detected at indicated reporting limit

--- = Not sampled and/or analyzed

Values represent total concentrations unless noted

Hits only # = Highest of Multiple Results ??? = Duplicate Results

J = Estimated value

B = Analyte found in blank and sample

Page: 1B of 1B

Semivolatile Organic Compounds Detections in Groundwater USEPA Method 8270 Burlington Environmental Inc.

Date: 08/20/93

Pier	91	Facility

SITE	DATE	Di-n-butyl- phthalate ug/l	Fluoranthene ug/l	Pyrene ug/l	bis(2-Ethyl hexyl)phthalate ug/l			
CP-104A	04/05/93	(7.7) J	(5.7) J	(2.7) J	(3.5) J			
CP-104A	07/06/93	(3.2) J	<10	<10	<10			
CP-107	04/08/93	(6.0) J	<9.9	<9.9	<9.9			
CP-107	07/13/93	<10	<10	<10	<10			
CP-112	04/07/93	(3.0) J	<9.9	<9.9	(2.2) J			
CP-112	07/08/93	<10	<10	<10	<10			
MW-39-3	04/14/93	11 B	< 10	< 10	<10			
MW-39-3	07/13/93	<10	<10	<10	<10			

< = Not detected at indicated reporting limit

--- = Not sampled and/or analyzed

Values represent total concentrations unless noted

Hits only # = Highest of Multiple Results ??? = Duplicate Results

J = Estimated value

B = Analyte found in blank and sample

Page: 1A of 1B Date: 08/19/93

Volatile Organic Compounds
Detections in Groundwater
USEPA Method 8240
Burlington Environmental Inc.
Pier 91 Facility

SITE	DATE	Vinyl chloride ug/l	Methylene chloride ug/l	Acetone ug/l	1,1-Dichloro ethane ug/l	Trichloroethene ug/l	Benzene ug/l	Toluene ug/l	Ethyl benzene ug/l
CP-104A	04/05/93	(3.8) J	< 5	(1.4) B	15	(2.5) J	(1.1) J	10	(4.2) J
CP-104A	07/06/93	(2.6) J	< 5	<25	6.9	<5	<5	8.7	(4.9) J
CP-107	04/08/93	<20	42 B	(11) J	(2.6) J	<10	<10	<10	<10
CP-107	07/13/93	<20	36	<50	<10	<10	(3.0) J	(1.8) J	(2.6) J
CP-112	04/07/93	<10	(0.73) JB	< 50	(1.7) J	(1.1) J	(1.8) J	< 5	< 5
CP-112	07/08/93	<20	<10	< 50	<10	<10	<10	<10	<10
MW-39-3	04/14/93	(4.1) JB	(1.0) JB	(4.4) JB	10	<5	14	6.9	11
MW-39-3	07/13/93	(2.7) J	<10	<50	(3.0) J	<10	(6,2) J	(4.0) J	(2.6) J

< = Not detected at indicated reporting limit

--- = Not sampled and/or analyzed

Values represent total concentrations unless noted

Page: 1B of 1B

Date: 08/19/93

Volatile Organic Compounds Detections in Groundwater USEPA Method 8240 Burlington Environmental Inc. Pier 91 Facility

SITE	DATE	Total xylenes ug/l	Chloroethane ug/l				
CP-104A	04/05/93	20	(4.1) J				
CP-104A	07/06/93	27	(2.5) J				
CP-107	04/08/93	(4.0) J	55				
CP-107	07/13/93	(4.8) J	<20				
CP-112	04/07/93	< 5	(3.2) J				
CP-112	07/08/93	<10	(5.8) J				
MW-39-3	04/14/93	60	130				
MW-39-3	07/13/93	(9.7) J	88				

< = Not detected at indicated reporting limit

--- = Not sampled and/or analyzed

Values represent total concentrations unless noted

Hits only # = Highest of Multiple Results ??? = Duplicate Results

Date: 08/19/93

Page: 1A of 1A

Total Petroleum Hydrocarbons **Detections in Groundwater** USEPA Methods 8015 Modified and 418.1 Burlington Environmental inc.

Pier 91 Facility

SITE	DATE	TPFH Method 8015 (Modified) mg/l	TPH 418.1 mg/l								
CP-104A	04/05/93	< 0.75	15								
CP-104A	07/06/93	< 0.75	<1.0								
CP-107	04/08/93	< 0.75	3.5								
CP-107	07/13/93	< 0.75	5.5								
CP-112	04/07/93	< 0.75	2.8								
CP-112	07/08/93	< 0.75	4.4								
MW-39-3	04/14/93	1.6	54								
MW-39-3	07/13/93	< 0.75	12								

--- = Not sampled and/or analyzed

Values represent total concentrations unless noted

< = Not detected at indicated reporting limit

Page: 1A of 1A Date: 08/20/93

Polychlorinated Biphenyls
Detections in Groundwater
USEPA Method 8080
Burlington Environmental Inc.

Pier 91 Facility

SITE	DATE	PCB-1016 ug/l	PCB-1221 ug/l	PCB-1232 ug/l	PCB-1242 ug/l	PCB-1248 ug/l	PCB-1254 ug/l	PCB-1260 ug/l	
CP-104A	04/05/93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
CP-104A	07/06/93	< 0.5	<0,5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CP-107	04/08/93								
CP-107	07/13/93								
CP-112	04/07/93	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
CP-112	07/08/93	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	
MW-39-3	04/14/93	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
MW-39-3	07/13/93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

< = Not detected at indicated reporting limit

^{--- =} Not sampled and/or analyzed

WTPH-HCID

Light Non-Aqueous Phase Liquid Burlington Environmental Inc.

Pier 91 Facility

Page: 1A of 1A Date: 08/20/93

SITE	DATE	Gasoline (C7 - C12)	Diesel (>C12 - C24)	Heavy Oil (C24+)			
		mg/kg	mg/kg	mg/kg			
CP-107 MW-39-3	04/08/93 04/14/93	20 + 20 +	50 + 50 +	<100 100 +			
144-39-3	04/14/33	40 T	00 1	100 1			
							*
			٠				
< = Not dete	ected at indicate	ed reporting limi	t = Not s	ampled and/or analy	ed Values represe	nt total concentrations un	less noted

+ = concentration equal to or greater than given value